迎门人体检测/zh

来自Microduino Wikipedia
502748957@qq.com讨论 | 贡献2015年12月15日 (二) 10:34的版本 调试过程
跳转至: 导航搜索

概述

  • 项目名称:Microduino迎门人体检测
  • 目的:当有人靠近时,彩灯变色并播报欢迎语音
  • 难度:中
  • 耗时:2小时
  • 制作者:
  • 简介:

本次教程我们将使用Microduino产品模块快速搭建一个迎门人体检测体统, 该系统通过热释传感器探测3米范围内是否有人靠近,在有人靠近时,可以通过彩色LED灯变换色彩进行提示,并播报出欢迎语音。

材料清单

  • Microduino设备
模块 数量 功能
Microduino-Core/zh 1 核心板
Microduino-USBTTL/zh 1 下载程序
Microduino-Audio/zh 1 音频控制
Microduino-Amplifier/zh 1 功率放大
Microduino-Sensorhub/zh 1 与传感器和舵机相连
Microduino-PIR/zh 1 热释红外传感器
Microduino-Lantern/zh 1 彩色LED灯
  • 其他设备
模块 数量 功能
Micro-USB线 1 下载程序,供电
喇叭 2 发声
螺丝 5 固定模块
外壳 1

实验原理

迎门人体检测系统主要分为检测与控制两个部分。检测部分采用红外热释传感器Microduino-PIR,能探测附近人体的红外特征信号。控制部分为声光控制,发光部件采用Microduino-Lantern模块,能让LED呈现美轮美奂的颜色;音频部分通过Microduino-Aduio模块管理音频文件,Microduino-Amplifier功率放大模块驱动2个喇叭发出洪亮的声音。

Doorwelcome1.jpg

整体系统的控制原理即接入以上两个部分,Microduino-Core核心通过PIR传感器探测到附近有人靠近后,控制Lantern模块变换颜色,Auido模块播报“欢迎光临”语音,从而达到迎宾欢迎的效果。

  • 主要传感器

Microduino-PIR/zh 人体都有恒定的体温,一般在37摄氏度,所以会发出特定波长10um左右的红外线,热释传感器就是通过被动式红外探头探测10um左右红外线而进行工作的。人体发射的10um左右的红外线经过菲涅尔滤光片增强后聚集到红外探头上。 红外探头通常采用热释电元件,这种元件在接受到人体红外辐射温度发生变化时就会失去电荷平衡,向外释放电荷,后续电路经过处理就能产生可以处理的电信号。 菲涅尔透镜利用透镜的特殊光学原理,在探测器前方产生一个交替变化的“盲区”和“高灵敏区”,以提高他的探测接收灵敏度。当有人从透镜前走过时,人体发出的红外线就不断地交替从“盲区”进入“高灵敏区”,这样就使接收到的红外信号以忽强忽弱的脉冲形式输入,从而增强其能量幅度。热释红外传感器只有配合菲涅尔透镜使用才能发挥最大作用。

文档

调试过程

  • 下载程序

将Microduino-Core与Microduino-USBTTL叠加(无上下顺序),通过USB数据与电脑连接起来。

Download1.jpg

打开Arduino IDE编程软件,点击【文件】->【打开】

Dl1.jpg

浏览到项目程序地址,点击“body_welcome.ino”程序打开。

点击【工具】,在板选项里面选择板卡(Microduino-Core),在处理器选项里面选择处理器(Atmega328p@16M,5V),再在端口选项里面选择正确的端口号,然后直接烧录程序。

Dl3.jpg

使用USB数据线将Microduino-Audio模块与电脑连接。 连接成功能显示出一个名为Microduino Audio的CD驱动器,然后执行以下步骤:

Dl5.jpg

打开CD驱动器后会出现音乐更新软件Music Update tool,选择“音频加载”选项;

Dl6.jpg

点击“浏览”,选择“music”文件夹中的"bye.wav,欢迎.wav"音频文件,将音频文件添加到软件中

欢迎与再见音频下载地址:http://pan.baidu.com/s/1pJpJK5X 提取码:hkks

在”更新下载”选项中选择“更新”,更新完成后,音频文件就已写入flash中。

Dl8.jpg
  • 搭建

拼装时首先将Microduino-Duo-S1板用尼龙螺柱固定在A2底板上面。

之后将Core(在最下),Audio,Amplifier,Sensorhub(在最上)按顺序叠加起来,之后加在Microduino-Duo-S1底板上

将喇叭连接到Amplifier的接口上(没有左右顺序区别)

首先使用螺丝和螺柱将两个红外热释传感器固定在两块侧板上,之后在拼接边框时先确定两个热释传感器的位置,按如图所示位置,相邻的放置在UPIN27开口方向的旁边。

将Microduino-ColorLED使用螺柱和螺母固定在顶板上

将传感器和Sensorhub用传感器线连接起来,两个红外热释传感器连接到D4/D5与D6/D7接口(图中蓝色标注),将Microduino-ColorLED连接到A0/A1接口(图中红色标注)

将顶盖盖上,注意图中黄色框中的插槽要与底部的插槽放在对应位置,此位置是固定喇叭的木片使用的。之后使用插销固定住每个插孔,顶部与底部共6*2总共12个固定口。

之后使用USB线连接底板上的USB接口给其供电。此时热释传感器检测到附近有人后,LED灯会变换颜色,喇叭播放出欢迎语音。并且会根据人来往的方向判断是进门还是出门。

程序说明

百度盘地址:http://pan.baidu.com/s/1o6nJT70 提取码:q54r

  • body_welcome.ino
#include "audio.h"
#include "key.h"

#include <Adafruit_NeoPixel.h>
#define PIN A0
Adafruit_NeoPixel strip = Adafruit_NeoPixel(12, PIN, NEO_GRB + NEO_KHZ800);

//#include <SoftwareSerial.h>

uint32_t color[9] =
{
  strip.Color(0, 0, 0), strip.Color(255, 0, 0), strip.Color(248, 141, 30), strip.Color(255, 255, 0),
 strip.Color(0, 255, 0), strip.Color(0, 127, 255), 
strip.Color(0, 0, 255), strip.Color(139, 0, 255), strip.Color(255, 255, 255)
};

#define body_pin 4
#define body_pin2 6
int i = 1;
int music_vol = 28; //初始音量0~30

boolean play_pause;
boolean play_stop;
boolean FLAG_1 = 0;
boolean FLAG_2 = 0;
void setup() {
  // initialize serial:
  Serial.begin(9600);
  pinMode(body_pin, INPUT);
  pinMode(body_pin2, INPUT);
//  key_init();

  audio_init(DEVICE_Flash, MODE_One_END, music_vol);

  strip.begin();	//初始化LED
  strip.show(); // Initialize all pixels to 'off'

  for (int i = 0; i < 9; i++)
  {
    colorWipe(color[i]);
    delay(300);
  }
  colorWipe(color[0]);
}

void loop() {
  judge();
  if (!digitalRead(body_pin)&&!digitalRead(body_pin2))
   {
    colorWipe(color[0]);
    FLAG_1 = 0;
    FLAG_2 = 0;
   }
}

void colorWipe(uint32_t c) {
  for (uint16_t i = 0; i < strip.numPixels(); i++)
  {
    strip.setPixelColor(i, c);
    strip.show();
  }
}
void judge()
{
  if((digitalRead(body_pin)==1)&&(digitalRead(body_pin2)==0))
  {
    FLAG_1 = 1;
    delay(200);
  }
  if((digitalRead(body_pin)==1)&&(digitalRead(body_pin2)==1)&&(FLAG_1 == 1))
  {

    colorWipe(color[random(1, 10)]);
    audio_choose(1);
    Serial.println("COMING IN");
    FLAG_1 = 0;
    delay(1300);    //1300
  }
  
 if((digitalRead(body_pin)==0)&&(digitalRead(body_pin2)==1))
  {
    FLAG_2 = 1;
    delay(200);    //2000
  }
  if((digitalRead(body_pin)==1)&&(digitalRead(body_pin2)==1)&&(FLAG_2 == 1))
  {
    colorWipe(color[random(1, 10)]);
    audio_choose(2);
    Serial.println("GOING OUT");
    FLAG_2 = 0;
    delay(1300);   //2000
  }
}
  • Audio.h
#include "arduino.h"
//#include <SoftwareSerial.h>

//SoftwareSerial mySerial(2, 3); // RX, TX

#define AUDIO_PORT Serial1    //Core+
//#define AUDIO_PORT mySerial  //Core

byte sn_reset[4]=
{
  0x7E,0x02,0x0C,0xEF
};

byte sn_choose[6]=
{
  0x7E,0x04,0x03,0x00,0x01,0xEF
};

byte sn_vol[5]=
{
  0x7E,0x03,0x06,0x18,0xEF 
};

byte sn_device[5]=
{
  0x7E,0x03,0x09,0x01,0xEF  
};

byte sn_pause[4]=
{
  0x7E,0x02,0x0E,0xEF
};

byte sn_play[4]=
{
  0x7E,0x02,0x0D,0xEF
};

byte sn_mode[5]=
{
  0x7E,0x03,0x11,0x00,0xEF
};

byte sn_down[4]=
{
  0x7E,0x02,0x01,0xEF
};

byte sn_up[4]=
{
  0x7E,0x02,0x02,0xEF
};

byte sn_eq[5]=
{
  0x7E,0x03,0x07,0x01,0xEF
};

//-----------------------------
void audio_pause()
{
  AUDIO_PORT.write(sn_pause,4);
  delay(50);
}

void audio_play()
{
  AUDIO_PORT.write(sn_play,4);
  delay(50);
}

//play eq    (Normal/Pop/Rock/Jazz/Classic/Base)  0-5
void audio_eq(byte _audio_eq)
{
  sn_mode[3]=_audio_eq;
  AUDIO_PORT.write(sn_eq,5);
  delay(100);
}

#define MODE_loopAll 0
#define MODE_loopOne 1
#define MODE_One_STOP 2
#define MODE_One_END  4
//play mode    (ALL/FOL/ONE/RAM/ONE_STOP)  0-4
void audio_mode(byte _audio_mode)
{
  sn_mode[3]=_audio_mode;
  AUDIO_PORT.write(sn_mode,5);
  delay(100);
}

#define DEVICE_Flash  5
#define DEVICE_TF  1
//device select    (U/TF/AUX/SLEEP/FLASH)  0-4
void audio_device(byte _audio_device)
{
  sn_device[3]=_audio_device;
  AUDIO_PORT.write(sn_device,5);
  delay(1500);
}

void audio_down()
{
  AUDIO_PORT.write(sn_down,4);
  delay(500);
}

void audio_up()
{
  AUDIO_PORT.write(sn_up,4);
  delay(500);
}

void audio_vol(byte _audio_vol)
{
  sn_vol[3]=_audio_vol;
  AUDIO_PORT.write(sn_vol,5);
  delay(50);
}

void audio_choose(byte _audio_choose)
{
  sn_choose[4]=_audio_choose;
  AUDIO_PORT.write(sn_choose,6);
  delay(100);
}

void audio_reset()
{
  AUDIO_PORT.write(sn_reset,4);
  delay(500);
}

void audio_init(int _audio_init_device,int _audio_init_mode,int _audio_init_vol)
{
  AUDIO_PORT.begin(9600);
  delay(500);
  audio_reset();
  audio_device(_audio_init_device);
  audio_mode(_audio_init_mode);
  audio_vol(_audio_init_vol);
  audio_pause();
}

视频