“MicroMV 人脸识别”的版本间的差异
第1行: | 第1行: | ||
*<p style="font-size:140%">'''基本原理'''</p> | *<p style="font-size:140%">'''基本原理'''</p> | ||
− | MicroMV捕捉人脸获取人脸坐标 | + | *MicroMV捕捉人脸获取人脸坐标 |
− | 通过pid.py算法计算出舵机将要转动的角度,并通过串口发送给microduino | + | *通过pid.py算法计算出舵机将要转动的角度,并通过串口发送给microduino |
− | microduino接收数据后控制舵机 | + | *microduino接收数据后控制舵机 |
== 1、快速上手<br /> == | == 1、快速上手<br /> == |
2018年5月16日 (三) 03:29的版本
基本原理
- MicroMV捕捉人脸获取人脸坐标
- 通过pid.py算法计算出舵机将要转动的角度,并通过串口发送给microduino
- microduino接收数据后控制舵机
1、快速上手
把pid.py复制到MicroMV生成的U盘空间中
pid.py:
from pyb import millis
from math import pi, isnan
class PID:
_kp = _ki = _kd = _integrator = _imax = 0
_last_error = _last_derivative = _last_t = 0
_RC = 1/(2 * pi * 20)
def __init__(self, p=0, i=0, d=0, imax=0):
self._kp = float(p)
self._ki = float(i)
self._kd = float(d)
self._imax = abs(imax)
self._last_derivative = float('nan')
def get_pid(self, error, scaler):
tnow = millis()
dt = tnow - self._last_t
output = 0
if self._last_t == 0 or dt > 1000:
dt = 0
self.reset_I()
self._last_t = tnow
delta_time = float(dt) / float(1000)
output += error * self._kp
if abs(self._kd) > 0 and dt > 0:
if isnan(self._last_derivative):
derivative = 0
self._last_derivative = 0
else:
derivative = (error - self._last_error) / delta_time
derivative = self._last_derivative + \
((delta_time / (self._RC + delta_time)) * \
(derivative - self._last_derivative))
self._last_error = error
self._last_derivative = derivative
output += self._kd * derivative
output *= scaler
if abs(self._ki) > 0 and dt > 0:
self._integrator += (error * self._ki) * scaler * delta_time
if self._integrator < -self._imax: self._integrator = -self._imax
elif self._integrator > self._imax: self._integrator = self._imax
output += self._integrator
return output
def reset_I(self):
self._integrator = 0
self._last_derivative = float('nan')
把face_detection1024.py替换到MicroMV生成的U盘空间中的main.py做为主程序
face_detection1024.py:
import sensor, time, image
from pyb import UART
from pid import PID
from pyb import LED
import json
red_led = LED(1)
green_led = LED(2)
blue_led = LED(3)
ir_led = LED(4)
pan_pid = PID(p=0.42, i=0.01, imax=90)
tilt_pid = PID(p=0.22, i=0.005, imax=90)
pan_servo_pos=90
tilt_servo_pos=90
pan_center = 60
tilt_center = 40
# Reset sensor
sensor.reset()
# Sensor settings
sensor.set_contrast(1)
sensor.set_gainceiling(16)
# HQVGA and GRAYSCALE are the best for face tracking.
sensor.set_framesize(sensor.HQQVGA)
sensor.set_pixformat(sensor.GRAYSCALE)
sensor.set_brightness(-3)
# Load Haar Cascade
# By default this will use all stages, lower satges is faster but less accurate.
face_cascade = image.HaarCascade("frontalface", stages=25)
print(face_cascade)
# FPS clock
clock = time.clock()
uart = UART(4, 115200)
while (True):
clock.tick()
# Capture snapshot
img = sensor.snapshot()
# Find objects.
# Note: Lower scale factor scales-down the image more and detects smaller objects.
# Higher threshold results in a higher detection rate, with more false positives.
objects = img.find_features(face_cascade, threshold=0.75, scale_factor=1.25)
# Draw objects
for r in objects:
red_led.on()
img.draw_rectangle(r)
pan_center = int(r[0]+r[2]/2)
tilt_center = int(r[1]+r[3]/2)
img.draw_cross(pan_center, tilt_center)
pan_error = pan_center-img.width()/2
tilt_error = tilt_center-img.height()/2
pan_output=pan_pid.get_pid(pan_error,1)/3
tilt_output=tilt_pid.get_pid(tilt_error,1)
pan_servo_pos=int(pan_servo_pos-pan_output)
tilt_servo_pos=int(tilt_servo_pos+tilt_output)
if pan_servo_pos>=170:
pan_servo_pos=170
if pan_servo_pos<=10:
pan_servo_pos=10
if tilt_servo_pos>=160:
tilt_servo_pos=160
if tilt_servo_pos<=30:
tilt_servo_pos=30
output_str="[%d,%d,%d]" % (pan_servo_pos,tilt_servo_pos,r[2])
print('you send:',output_str)
uart.write(output_str+'\n')
red_led.off()
IDE运行效果为
屏幕中有人脸就会用方框注明
2、知识延伸
颜色空间
函数:
• 函数说明