“Microduino-BM”的版本间的差异

来自Microduino Wikipedia
跳转至: 导航搜索
Applications
 
(未显示4个用户的19个中间版本)
第3行: 第3行:
 
|-
 
|-
 
|
 
|
[[File:Microduino-BM-rect.jpg|400px|thumb|right|Microduino-BM]]
+
[[File:Microduino-bm-rect.jpg|400px|thumb|right|Microduino-BM]]
  
  
  
'''[[Microduino-BM]]''' is a discharge module which combines a single-cell Li-ion battery charge management,  
+
'''[[Microduino-BM]]''' is a discharging module which combines a single-cell Li-ion battery charge management,  
power detection and LED indication. The output voltage is 5V, and LDO is 3.3V output. Provides the outstanding battery management for the Microduino-Core module.  
+
power detection and LED indication. The output voltage is 5V, and LDO is 3.3V output, providing the outstanding battery management for the Microduino-Core module.  
 
 
  
  
第17行: 第16行:
 
|
 
|
 
==Features==
 
==Features==
* Integrated functions that charge/discharge management, power detection, 5v output, 3.3v LDO;
+
*Support UPS;
* Toggle switch controls the charging and discharging, reboot and sleep mode;
+
* Integrate lithium battery charge/discharge management, power detection, 5v output, 3.3v LDO;
* Small, cheap, stackable, opened platform;
+
* Small, cheap, stackable, open;
* Define unified interface Microduino specification and contain rich peripheral modules. Set up the quick connection with other Microduino modules and sensors easily and flexibly.  
+
* Uniform Microduino interface standard and rich peripheral modules, capable of having a fast and flexible connection and extension with other modules and sensors in accord with Microduino interface standard;.  
* 2.54 pitch row female connector for easy integration into breadboard.
+
* 2.54-pitch row female connector for easy integration into pegboards.
  
 
|-
 
|-
第27行: 第26行:
  
 
==Specifications==
 
==Specifications==
===Interfaces===
+
===Interface===
* A pushbutton switch
+
** A two-notch toggle switch to control the output voltage (5v and 3.3v);
* A two toggle switchs
+
**A MicroUSB interface for power charging. 
* One pair of 2.54 battery interface ("+" for positive, "-" for negative)
+
**A 1.27-pitch battery interface;
* UPIN27 contains the 5V, 3V3, GND interface:
+
** UPIN27 contains the 5V, 3V3 and GND interface; (The analog voltage detection of BM can be selected between A6 and A7, and the digital low voltage will be output to D2 interface. Please don’t rely protection circuit to protect the battery, which only works in extreme circumstance. You can use mcu to detect the voltage of the battery and then judge the battery’s charge. ) 
  
[[File:BM-Pinout-1.jpg|800px|thumb|center|Microduino-BM-Pinout1]]
 
[[File:BM-Pinout-2.jpg|800px|thumb|center|Microduino-BM-Pinout2]]
 
  
 
|-
 
|-
第40行: 第37行:
  
 
===Charging===
 
===Charging===
* First connect the external 5V power, and then set the pushbutton switch to "IN" position, the module goes into the charging state, then four LED lights flash to indicate charging (detailed display mode, please refer to HT4901 document), the maximum charging current is 500mA. Finished charging,turn the pushbutton switch to "OUT", and unplug the external 5V charging power.
+
*Plug in MicroUSB and charge the lithium battery with the current of 600ma.
* Note:
+
*The indicator goes on when charging and goes out after finishing.   
* Always follow the charging process: make sure switch to "OUT", plug in the battery, connect external 5V power, switch to "IN", start charging, After charging completed, switch back to "OUT" , unplug the external 5V Charge power.
+
 
* Recommended charging power supply: Voltage 5V, current 600ma above;
 
* Don't add voltage-drop elements (such as diodes) in the charging circuitThese will reduce the charging current because of lower charging voltage.
 
  
 
|-
 
|-
 
|
 
|
  
===Discharge===
+
===Discharging===
* Make sure the switch is in the "OUT" firstly. After connect to the battery, the module is in the standby mode, then short press button switch (timer> 50mS), the module will be wake up from standby mode. Voltage output will start at this time, and open UPIN27's GND circuit: Interface 5V outputs 5V voltage, maximum current is 500mA; while 3.3V interface outputs 3.3V voltage,  maximum current is 250mA.
+
*When you plug in MicroUSB, the 5v or 3.3v voltage is powered through MicroUSB. Otherwise, the voltage will be supplied by the lithium battery. Meantime, you need to pull the power output switch to “ON”. If it is not started, please plug in MicroUSB to activate and then try again.  
* When the battery voltage under-voltage (3.3V) or enter limiting / boost output short circuit protection, enter standby mode.
+
*The indicator goes on when there is electricity output, otherwise, it goes out.  
* Note:
+
*5V offers 1a electricity output and 3.3V offers 700ma output.
* Make sure the switch is in the "OUT" and then start the boost output;
 
* please do not toggle the switch in Battery-powered process.
 
  
 
|-
 
|-
 
|
 
|
===Power detection===
 
* Make sure the switch is in the "OUT", after access to the battery, press button switch on the built-in battery detection. The four LEDs use to battery indicator, and last 3 ~ 5S.
 
  
 +
===Low-voltage Battery Protection===
 +
{|class="wikitable"
 +
|-
 +
| Undervoltage indication|| 3.60V
 +
|-
 +
| Low-voltage protection ||2.40V
 +
|-
 +
|Indicator-off voltage when the voltage gets back.||3.71V
 +
|}
 +
 +
Low voltage indicator goes on under 3.60V and when the voltage keeps decreasing to 2.40V, the lithium battery protection circuit works. The indicator will go out when the battery is powered to 3.71V.
 +
 +
 +
===Short-circuit Protection===
 +
When the output current reaches '''1.2A''', the lithium battery protection circuit starts and cuts off power supply. The circuit will be activated and get back to work only when you plug in MicroUSB to charge. '''
 +
 +
===Efficiency of BM and Its Load Driven Capacity===
 +
100ma 5.05v output:
 +
{|class="wikitable"
 +
| align="center" style="background:#f0f0f0;"|'''Input voltage'''
 +
| align="center" style="background:#f0f0f0;"|'''4.2'''
 +
| align="center" style="background:#f0f0f0;"|'''4'''
 +
| align="center" style="background:#f0f0f0;"|'''3.8'''
 +
| align="center" style="background:#f0f0f0;"|'''3.6'''
 +
| align="center" style="background:#f0f0f0;"|'''3.4'''
 +
| align="center" style="background:#f0f0f0;"|'''3.2'''
 +
| align="center" style="background:#f0f0f0;"|'''3'''
 +
| align="center" style="background:#f0f0f0;"|'''2.8'''
 +
|-
 +
| Input current||139||148||156||166||178||190||204||220
 +
|-
 +
| Efficiency||86.50%||85.30%||85.20%||84.50%||83.40%||83.10%||82.50%||82.00%
 +
|}
 +
 +
300ma 5.05v output:
 +
{| class="wikitable"
 +
| align="center" style="background:#f0f0f0;"|'''Input voltage'''
 +
| align="center" style="background:#f0f0f0;"|'''4.2'''
 +
| align="center" style="background:#f0f0f0;"|'''4'''
 +
| align="center" style="background:#f0f0f0;"|'''3.8'''
 +
| align="center" style="background:#f0f0f0;"|'''3.6'''
 +
| align="center" style="background:#f0f0f0;"|'''3.4'''
 +
| align="center" style="background:#f0f0f0;"|'''3.2'''
 +
| align="center" style="background:#f0f0f0;"|'''3'''
 +
| align="center" style="background:#f0f0f0;"|'''2.8'''
 +
|-
 +
| Input current||411||437||460||492||525||570||615||679
 +
|-
 +
| Efficiency||87.80%||87.10%||86.90%||85.40%||84.70%||82.90%||81.50%||79.70%
 +
|}
 +
500ma 5.05v output:
 +
{| class="wikitable"
 +
| align="center" style="background:#f0f0f0;"|'''Input voltage'''
 +
| align="center" style="background:#f0f0f0;"|'''4.2'''
 +
| align="center" style="background:#f0f0f0;"|'''4'''
 +
| align="center" style="background:#f0f0f0;"|'''3.8'''
 +
| align="center" style="background:#f0f0f0;"|'''3.6'''
 +
| align="center" style="background:#f0f0f0;"|'''3.4'''
 +
| align="center" style="background:#f0f0f0;"|'''3.2'''
 +
| align="center" style="background:#f0f0f0;"|'''3'''
 +
| align="center" style="background:#f0f0f0;"|'''2.8'''
 +
|-
 +
| Input current||706||746||800||863||938||1028||1157
 
|-
 
|-
|
+
| Efficiency||85.20%||84.60%||83.10%||81.30%||79.20%||76.80%||72.70%||
===Standby===
+
|}
* Standby means that disconnect the circuit UPIN27's GND circuit. In this state, BM can be controlled within the overall power consumption of 30uA.
+
700ma 5.05v output:
* Make sure the switch is in the "OUT", if no any action after accessing the battery, then the default mode is in standby mode.
+
{| class="wikitable"
* If you've turned on discharge mode,, pressing the button switch (3s above) to re-enter into standby mode.
+
| align="center" style="background:#f0f0f0;"|'''Input voltage'''
* Intelligent Detection: No charge input, no discharge output (<10mA) within three minutes will enter into standby mode.
+
| align="center" style="background:#f0f0f0;"|'''4.2'''
 +
| align="center" style="background:#f0f0f0;"|'''4'''
 +
| align="center" style="background:#f0f0f0;"|'''3.8'''
 +
| align="center" style="background:#f0f0f0;"|'''3.6'''
 +
| align="center" style="background:#f0f0f0;"|'''3.4'''
 +
| align="center" style="background:#f0f0f0;"|'''3.2'''
 +
| align="center" style="background:#f0f0f0;"|'''3'''
 +
| align="center" style="background:#f0f0f0;"|'''2.8'''
 +
|-
 +
| Input current||1025||1104||1189||1313||1510
 +
|-
 +
| Efficiency||82.10%||80.00%||78.20%||74.80%||68.90%
 +
|}
 +
1A 5.05v output:
 +
{| class="wikitable"
 +
| align="center" style="background:#f0f0f0;"|'''Input voltage'''
 +
| align="center" style="background:#f0f0f0;"|'''4.2'''
 +
| align="center" style="background:#f0f0f0;"|'''4'''
 +
| align="center" style="background:#f0f0f0;"|'''3.8'''
 +
| align="center" style="background:#f0f0f0;"|'''3.6'''
 +
| align="center" style="background:#f0f0f0;"|'''3.4'''
 +
| align="center" style="background:#f0f0f0;"|'''3.2'''
 +
| align="center" style="background:#f0f0f0;"|'''3'''
 +
| align="center" style="background:#f0f0f0;"|'''2.8'''
 +
|-
 +
| Input current||1622||1842
 +
|-
 +
| Efficiency||74.10%||68.50%
 +
|}
 +
 
 +
[[file:Micrmodule-BM-Analysis.jpg|thumb|600px|center|image]]
 +
 
 +
We can see from data above that BM’s 5v output shows excellent transfer efficiency no matter under low or high power output. The load driven capacity of that can reach 1A. The 3.3v transferring efficiency depends on the 1117 chip, which should be around 60% and the load driven capacity can reach up to 600ma. 
  
 +
===Temperature Rise of System Operation===
 +
Temperature rise under 5v output and 30 ℃ indoor:
 +
{| class="wikitable"
 +
| align="center" style="background:#f0f0f0;"|
 +
| align="center" style="background:#f0f0f0;"|'''3-minute '''
 +
| align="center" style="background:#f0f0f0;"|
 +
| align="center" style="background:#f0f0f0;"|
 +
| align="center" style="background:#f0f0f0;"|'''5-minute '''
 +
| align="center" style="background:#f0f0f0;"|
 +
| align="center" style="background:#f0f0f0;"|
 +
| align="center" style="background:#f0f0f0;"|'''10-minute '''
 +
|-
 +
| Current||300||500||700||300||500||700||300||500||700
 +
|-
 +
| Temperature||32||35.8||46||32.7||40||48||32.7||40||51
 +
|}
 +
Temperature rise under 3.3v output and 26 ℃ indoor:
 +
{| class="wikitable"
 +
| align="center" style="background:#f0f0f0;"|
 +
| align="center" style="background:#f0f0f0;"|'''3-minute'''
 +
| align="center" style="background:#f0f0f0;"|
 +
| align="center" style="background:#f0f0f0;"|
 +
| align="center" style="background:#f0f0f0;"|'''5-minute'''
 +
| align="center" style="background:#f0f0f0;"|
 +
| align="center" style="background:#f0f0f0;"|
 +
| align="center" style="background:#f0f0f0;"|'''10-minute'''
 +
|-
 +
| Current||100||300||500||300||500||700||300||500||700
 
|-
 
|-
|
+
| Temperature||27.5||32||40||28.5||35||44||28.5||38||49
 +
|}
 +
 
  
 
==Documents==
 
==Documents==
* '''[[Microduino-BM]]''' Eagle source file 【'''[[media:Microduino-BM.zip|download]]'''】
+
Eagle PCB '''[[File:Microduino-BM.zip]]''
* '''[[Microduino-BM]]''' main chips and devices
 
  
  
第94行: 第209行:
 
*Recommended battery module is connected with 2PIN DuPont;
 
*Recommended battery module is connected with 2PIN DuPont;
 
*Recommended power options: voltage 5V, current 600ma above, such as: computer USB, 5V phone charger.
 
*Recommended power options: voltage 5V, current 600ma above, such as: computer USB, 5V phone charger.
 
 
  
  
第103行: 第216行:
 
==Applications==
 
==Applications==
  
 +
*Lithium battery charge 
 +
*Lithium battery voltage boosting to power Microduino core modules
  
When viewing the board with the battery connector and switches closest to you, with the component side up, the battery connector positive (+) pin is on the left and the ground (-) pin is on the right. The pushbutton switch is on the left and the mode switch (IN = Charge, lever to the left; OUT = Discharge, lever to the right) is on the right.
+
==Pictures==
 
+
[[file:Micrmodule-bm-t.jpg|thumb|600px|center|Micrmodule BM Front]]
After connecting the battery you must momentarily push the pushbutton switch to start the converter. You can stop the converter/turn off the power by unplugging the battery or by pressing and holding the pushbutton for a few seconds. To use the battery to generate +5 VDC and +3.3 VDC, set the mode switch (to the right of the battery connector when viewed as described above) to OUT (switch lever away from the battery connector). The IN position is used for charging the battery from an external 5VDC, >=600 mA source.
+
[[file:Micrmodule-bm-b.jpg|thumb|600px|center|Micrmodule BM Back]]
 
 
The charging current is 500 mA, so I recommend a battery with at least 500 mAH of capacity to avoid charging at a rate >1C.
 
 
 
A rough English translation of the charging process is as follows:
 
*Set the mode switch to OUT (switch lever away from the battery connector);
 
*Plug in the battery;
 
*Plug in the external 5VDC power supply (at least a 600 mA supply recommended);
 
*Set the mode switch to IN (switch lever toward the battery connector);
 
*When charging is complete as indicated by all 4 LEDs on, set the mode switch to OUT (switch lever away from the battery connector);
 
*Unplug the external 5VDC power supply.
 
The LED indications seem to be as follows, based on how Google Translate translates the Chinese datasheet for the HOTCHIP HT4901 at
 
http://www.hotchip.com.cn/DownFiles/20131126090806453.pdf
 
 
 
Discharge Mode
 
 
 
:{|class="wikitable"
 
! Voltage
 
! LED1
 
! LED2
 
! LED3
 
! LED4
 
|-
 
| 3.2-3.5V
 
| ON
 
| OFF
 
| OFF
 
| OFF
 
|-
 
| 3.5-3.65V
 
| ON
 
| ON
 
| OFF
 
| OFF
 
|-
 
| 3.65-3.95V
 
| ON
 
| ON
 
| ON
 
| OFF
 
|-
 
| > 3.95V
 
| ON
 
| ON
 
| ON
 
| ON
 
|}
 
 
 
 
 
If the voltage drops below 3.2V, LED1 flashes and within 5 seconds the HT4901 goes to standby mode (I think... or should I say I hope...) to avoid over-discharging your battery.
 
 
 
Charge Mode
 
:{|class="wikitable"
 
! Voltage
 
! LED1
 
! LED2
 
! LED3
 
! LED4
 
|-
 
| <3.4V
 
| FLASH
 
| FLASH
 
| FLASH
 
| FLASH
 
|-
 
| 3.4-3.8V
 
| ON
 
| FLASH
 
| FLASH
 
| FLASH
 
|-
 
| 3.8-4.0V
 
| ON
 
| ON
 
| FLASH
 
| FLASH
 
|-
 
| 4.0-4.25V
 
| ON
 
| ON
 
| ON
 
| FLASH
 
|-
 
| >= 4.25V
 
| ON
 
| ON
 
| ON
 
| ON
 
|}
 
 
 
 
 
 
 
Be prepared to terminate the charging process immediately when all four LEDs are on and steady. Overcharging lithium-type batteries may result in a nasty fire. I don't know how good the HT4901 is at detecting that the charging process is complete and shutting off the charging current to the battery.
 
 
 
Hope I correctly translated this information.
 
 
 
 
 
  
 
|-
 
|-
 
|
 
|
  
==Pictures==
+
==FQA==
[[file:Micrmodule-BM-t.jpg|thumb|600px|center|Micrmodule BM Front]]
 
[[file:Micrmodule-BM-b.jpg|thumb|600px|center|Micrmodule BM Back]]
 
 
 
 
 
 
 
  
|-
 
|
 
 
==History==
 
==History==
 
November 14, 2013 new release, major improvements:
 
November 14, 2013 new release, major improvements:

2014年11月10日 (一) 09:45的最新版本

Language English
Microduino-BM


Microduino-BM is a discharging module which combines a single-cell Li-ion battery charge management, power detection and LED indication. The output voltage is 5V, and LDO is 3.3V output, providing the outstanding battery management for the Microduino-Core module.



Features

  • Support UPS;
  • Integrate lithium battery charge/discharge management, power detection, 5v output, 3.3v LDO;
  • Small, cheap, stackable, open;
  • Uniform Microduino interface standard and rich peripheral modules, capable of having a fast and flexible connection and extension with other modules and sensors in accord with Microduino interface standard;.
  • 2.54-pitch row female connector for easy integration into pegboards.

Specifications

Interface

    • A two-notch toggle switch to control the output voltage (5v and 3.3v);
    • A MicroUSB interface for power charging.
    • A 1.27-pitch battery interface;
    • UPIN27 contains the 5V, 3V3 and GND interface; (The analog voltage detection of BM can be selected between A6 and A7, and the digital low voltage will be output to D2 interface. Please don’t rely protection circuit to protect the battery, which only works in extreme circumstance. You can use mcu to detect the voltage of the battery and then judge the battery’s charge. )


Charging

  • Plug in MicroUSB and charge the lithium battery with the current of 600ma.
  • The indicator goes on when charging and goes out after finishing.


Discharging

  • When you plug in MicroUSB, the 5v or 3.3v voltage is powered through MicroUSB. Otherwise, the voltage will be supplied by the lithium battery. Meantime, you need to pull the power output switch to “ON”. If it is not started, please plug in MicroUSB to activate and then try again.
  • The indicator goes on when there is electricity output, otherwise, it goes out.
  • 5V offers 1a electricity output and 3.3V offers 700ma output.

Low-voltage Battery Protection

Undervoltage indication 3.60V
Low-voltage protection 2.40V
Indicator-off voltage when the voltage gets back. 3.71V

Low voltage indicator goes on under 3.60V and when the voltage keeps decreasing to 2.40V, the lithium battery protection circuit works. The indicator will go out when the battery is powered to 3.71V.


Short-circuit Protection

When the output current reaches 1.2A, the lithium battery protection circuit starts and cuts off power supply. The circuit will be activated and get back to work only when you plug in MicroUSB to charge.

Efficiency of BM and Its Load Driven Capacity

100ma 5.05v output:

Input voltage 4.2 4 3.8 3.6 3.4 3.2 3 2.8
Input current 139 148 156 166 178 190 204 220
Efficiency 86.50% 85.30% 85.20% 84.50% 83.40% 83.10% 82.50% 82.00%

300ma 5.05v output:

Input voltage 4.2 4 3.8 3.6 3.4 3.2 3 2.8
Input current 411 437 460 492 525 570 615 679
Efficiency 87.80% 87.10% 86.90% 85.40% 84.70% 82.90% 81.50% 79.70%

500ma 5.05v output:

Input voltage 4.2 4 3.8 3.6 3.4 3.2 3 2.8
Input current 706 746 800 863 938 1028 1157
Efficiency 85.20% 84.60% 83.10% 81.30% 79.20% 76.80% 72.70%

700ma 5.05v output:

Input voltage 4.2 4 3.8 3.6 3.4 3.2 3 2.8
Input current 1025 1104 1189 1313 1510
Efficiency 82.10% 80.00% 78.20% 74.80% 68.90%

1A 5.05v output:

Input voltage 4.2 4 3.8 3.6 3.4 3.2 3 2.8
Input current 1622 1842
Efficiency 74.10% 68.50%

We can see from data above that BM’s 5v output shows excellent transfer efficiency no matter under low or high power output. The load driven capacity of that can reach 1A. The 3.3v transferring efficiency depends on the 1117 chip, which should be around 60% and the load driven capacity can reach up to 600ma.

Temperature Rise of System Operation

Temperature rise under 5v output and 30 ℃ indoor:

3-minute 5-minute 10-minute
Current 300 500 700 300 500 700 300 500 700
Temperature 32 35.8 46 32.7 40 48 32.7 40 51

Temperature rise under 3.3v output and 26 ℃ indoor:

3-minute 5-minute 10-minute
Current 100 300 500 300 500 700 300 500 700
Temperature 27.5 32 40 28.5 35 44 28.5 38 49


Documents

Eagle PCB '文件:Microduino-BM.zip



Main components

Development

  • Battery: single-cell 3.7v li-ion battery;
  • Recommended battery module is connected with 2PIN DuPont;
  • Recommended power options: voltage 5V, current 600ma above, such as: computer USB, 5V phone charger.


Applications

  • Lithium battery charge
  • Lithium battery voltage boosting to power Microduino core modules

Pictures

文件:Micrmodule-bm-t.jpg
Micrmodule BM Front
文件:Micrmodule-bm-b.jpg
Micrmodule BM Back

FQA

History

November 14, 2013 new release, major improvements:

  • Canceled VMOT pin, use the toggle switch directly and use the 5V port switching charge and discharge;
  • Boost pushbutton can fully control the boost, UPIN27 the GND loop off.
  • March 13, 2013 Batch completed.
  • March 1, 2013 20130202 edition model released, testing is no big problem.
  • February 2, 2013, using mobile power ASIC chip, re-layout.
  • December 31, 2012, released the test panels, the main problems are:
  • No 5V output;
  • Battery Interface leakage;
  • No power display.