“MicroMV 人脸识别”的版本间的差异
502748957@qq.com(讨论 | 贡献) |
|||
(未显示1个用户的2个中间版本) | |||
第1行: | 第1行: | ||
=='''基本原理'''== | =='''基本原理'''== | ||
− | * | + | *MicroMV捕捉人脸得到人脸坐标 |
=='''MicroMV的代码准备'''== | =='''MicroMV的代码准备'''== | ||
第58行: | 第58行: | ||
效果如下: | 效果如下: | ||
[[File:microMVGettingStart8.png||600px|center]] | [[File:microMVGettingStart8.png||600px|center]] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | [[MicroMV 简介|返回MicroMV目录页面]] |
2018年12月7日 (五) 03:19的最新版本
基本原理
- MicroMV捕捉人脸得到人脸坐标
MicroMV的代码准备
# Face Detection Example
#
# This example shows off the built-in face detection feature of the OpenMV Cam.
#
# Face detection works by using the Haar Cascade feature detector on an image. A
# Haar Cascade is a series of simple area contrasts checks. For the built-in
# frontalface detector there are 25 stages of checks with each stage having
# hundreds of checks a piece. Haar Cascades run fast because later stages are
# only evaluated if previous stages pass. Additionally, your OpenMV Cam uses
# a data structure called the integral image to quickly execute each area
# contrast check in constant time (the reason for feature detection being
# grayscale only is because of the space requirment for the integral image).
import sensor, time, image
# Reset sensor
sensor.reset()
# Sensor settings
sensor.set_contrast(1)
sensor.set_gainceiling(16)
# HQVGA and GRAYSCALE are the best for face tracking.
sensor.set_framesize(sensor.HQVGA)
sensor.set_pixformat(sensor.GRAYSCALE)
# Load Haar Cascade
# By default this will use all stages, lower satges is faster but less accurate.
face_cascade = image.HaarCascade("frontalface", stages=25)
print(face_cascade)
# FPS clock
clock = time.clock()
while (True):
clock.tick()
# Capture snapshot
img = sensor.snapshot()
# Find objects.
# Note: Lower scale factor scales-down the image more and detects smaller objects.
# Higher threshold results in a higher detection rate, with more false positives.
objects = img.find_features(face_cascade, threshold=0.75, scale_factor=1.25)
# Draw objects
for r in objects:
img.draw_rectangle(r)
# Print FPS.
# Note: Actual FPS is higher, streaming the FB makes it slower.
print(clock.fps())
效果如下: