查看“MicroMV 巡线机器人”的源代码
←
MicroMV 巡线机器人
跳转至:
导航
、
搜索
因为以下原因,您没有权限编辑本页:
您所请求的操作仅限于该用户组的用户使用:
用户
您可以查看与复制此页面的源代码。
=='''基本原理'''== *MicroMV捕捉线并计算出需要旋转的角度,通过串口发送给microduino *microduino接收数据后控制舵机电机 =='''MicroMV的代码准备'''== 把lineFollowing.py替换到MicroMV生成的U盘空间中的main.py做为主程序<br /> lineFollowing.py: <source lang="py"> import sensor, image, time, math, lcd from pyb import UART import json # Tracks a black line. Use [(128, 255)] for a tracking a white line. # GRAYSCALE_THRESHOLD = [(0, 64)] GRAYSCALE_THRESHOLD = [(0, 50)] #设置阈值,如果是黑线,GRAYSCALE_THRESHOLD = [(0, 64)]; #如果是白线,GRAYSCALE_THRESHOLD = [(128,255)] # Each roi is (x, y, w, h). The line detection algorithm will try to find the # centroid of the largest blob in each roi. The x position of the centroids # will then be averaged with different weights where the most weight is assigned # to the roi near the bottom of the image and less to the next roi and so on. ROIS = [ # [ROI, weight] (0, 100, 160, 20, 0.7), # You'll need to tweak the weights for you app (0, 050, 160, 20, 0.3), # depending on how your robot is setup. (0, 000, 160, 20, 0.1) ] #roi代表三个取样区域,(x,y,w,h,weight),代表左上顶点(x,y)宽高分别为w和h的矩形, #weight为当前矩形的权值。注意本例程采用的QQVGA图像大小为160x120,roi即把图像横分成三个矩形。 #三个矩形的阈值要根据实际情况进行调整,离机器人视野最近的矩形权值要最大, #如上图的最下方的矩形,即(0, 100, 160, 20, 0.7) # Compute the weight divisor (we're computing this so you don't have to make weights add to 1). weight_sum = 0 #权值和初始化 for r in ROIS: weight_sum += r[4] # r[4] is the roi weight. #计算权值和。遍历上面的三个矩形,r[4]即每个矩形的权值。 # Camera setup... sensor.reset() # Initialize the camera sensor. sensor.set_pixformat(sensor.GRAYSCALE) # use grayscale. sensor.set_framesize(sensor.QQVGA) # use QQVGA for speed. sensor.skip_frames(30) # Let new settings take affect. sensor.set_auto_gain(False) # must be turned off for color tracking sensor.set_auto_whitebal(False) # must be turned off for color tracking #关闭白平衡 clock = time.clock() # Tracks FPS. lcd.init() # Initialize the lcd screen. uart = UART(4, 115200) uart.init(115200, bits=8, parity=None, stop=1) # init with given parameters while(True): clock.tick() # Track elapsed milliseconds between snapshots(). img = sensor.snapshot() # Take a picture and return the image. centroid_sum = 0 #利用颜色识别分别寻找三个矩形区域内的线段 for r in ROIS: blobs = img.find_blobs(GRAYSCALE_THRESHOLD, roi=r[0:4], merge=True) # r[0:4] is roi tuple. #找到视野中的线,merge=true,将找到的图像区域合并成一个 #目标区域找到直线 if blobs: # Find the index of the blob with the most pixels. most_pixels = 0 largest_blob = 0 for i in range(len(blobs)): #目标区域找到的颜色块(线段块)可能不止一个,找到最大的一个,作为本区域内的目标直线 if blobs[i].pixels() > most_pixels: most_pixels = blobs[i].pixels() #merged_blobs[i][4]是这个颜色块的像素总数,如果此颜色块像素总数大于 #most_pixels,则把本区域作为像素总数最大的颜色块。更新most_pixels和largest_blob largest_blob = i # Draw a rect around the blob. img.draw_rectangle(blobs[largest_blob].rect()) #将此区域的像素数最大的颜色块画矩形和十字形标记出来 img.draw_cross(blobs[largest_blob].cx(), blobs[largest_blob].cy()) centroid_sum += blobs[largest_blob].cx() * r[4] # r[4] is the roi weight. #计算centroid_sum,centroid_sum等于每个区域的最大颜色块的中心点的x坐标值乘本区域的权值 center_pos = (centroid_sum / weight_sum) # Determine center of line. #中间公式 # Convert the center_pos to a deflection angle. We're using a non-linear # operation so that the response gets stronger the farther off the line we # are. Non-linear operations are good to use on the output of algorithms # like this to cause a response "trigger". deflection_angle = 0 #机器人应该转的角度 # The 80 is from half the X res, the 60 is from half the Y res. The # equation below is just computing the angle of a triangle where the # opposite side of the triangle is the deviation of the center position # from the center and the adjacent side is half the Y res. This limits # the angle output to around -45 to 45. (It's not quite -45 and 45). deflection_angle = -math.atan((center_pos-80)/60) #角度计算.80 60 分别为图像宽和高的一半,图像大小为QQVGA 160x120. #注意计算得到的是弧度值 # Convert angle in radians to degrees. deflection_angle = math.degrees(deflection_angle) #将计算结果的弧度值转化为角度值 # Now you have an angle telling you how much to turn the robot by which # incorporates the part of the line nearest to the robot and parts of # the line farther away from the robot for a better prediction. # print("Turn Angle: %f" % deflection_angle) if center_pos!=0: output_str=json.dumps([deflection_angle]) else: output_str=json.dumps([0]) # output_str=json.dumps([deflection_angle]) print('you send:',output_str) uart.write(output_str+'\n') # uart.write(deflection_angle+'\n') #将结果打印在terminal中 lcd.display(img) </source> IDE运行效果为<br/> [[File:microMVLineFollowing1.png||600px|left]]<br style="clear: left"/> 屏幕中会对线进行标注 =='''Microduino的代码准备'''== <source lang="py"> #define my_Serial Serial1 #define servoPin 6 #define LEDPin 4 #include <Servo.h> #include <Microduino_ColorLED.h> //引用彩灯库 static const uint8_t carPinForward = 8; static const uint8_t carPinBackward = 9; uint8_t carPower=40; // uint8_t carPower=0; Servo myservo; String degreeStr; int pos=0; int lastPos=0; ColorLED strip = ColorLED(1, LEDPin); void setup() { Serial.begin(115200); my_Serial.begin(115200); myservo.attach(servoPin); strip.begin(); strip.setBrightness(60); strip.setPixelColor(0, strip.Color(255, 255, 255)); strip.show(); pinMode(carPinForward, OUTPUT); digitalWrite(carPinForward, LOW); pinMode(carPinBackward, OUTPUT); digitalWrite(carPinBackward, LOW); } void loop() { if (my_Serial.available() > 0) { degreeStr = my_Serial.readStringUntil('\n'); uint8_t len=degreeStr.length(); degreeStr=degreeStr.substring(1,len-1); pos=degreeStr.toInt(); Serial.println(pos); if(pos!=0) { pos = map(pos, -50, 50, 30, 130); myservo.write(pos); lastPos=pos; } else { if(lastPos>80) { myservo.write(130); }else { myservo.write(30); } } } uint8_t detlaSpeed=0; uint8_t detlaSpeed=abs(pos-80); detlaSpeed=map(detlaSpeed,0,50,0,7); analogWrite(carPinForward, carPower-detlaSpeed); digitalWrite(carPinBackward, LOW); } </source>
返回至
MicroMV 巡线机器人
。
导航菜单
个人工具
创建账户
登录
名字空间
页面
讨论
变种
视图
阅读
查看源代码
查看历史
更多
搜索
Welcome
首页
创客大赛
大赛详情
3D打印
安装月球车
图形化编程
操控月球车
升级月球车
编程工具下载
软件下载
Arduino
Processing
Mixly
Scratch
模块套件
Microduino 102
mCookie 102
mCookie 202
mCookie 302
IBC
其他
应用套件
四轴飞行器
平衡车
小车CUBE
音乐播放器
刷卡音乐播放器
wifi气象站
彩虹音乐触摸灯
分贝检测仪
迎门汇报
LED点阵时钟
LED点阵屏幕
硬件
mCookie
Sensor
Microduino
MicroWrt
MicroNux
MicroRobot-Core
MicroRobot-CoreESP
ideaBoard
ideaBox
MicroMV
MicroAI
帮助
常见问题
帮助
工具
链入页面
相关更改
特殊页面
页面信息