查看“平衡车/zh”的源代码
←
平衡车/zh
跳转至:
导航
、
搜索
因为以下原因,您没有权限编辑本页:
您所请求的操作仅限于该用户组的用户使用:
用户
您可以查看与复制此页面的源代码。
{| style="width: 800px;" |- | ==概述== *项目名称:Microduino自平衡车 *目的:制作一台可以用遥控板控制的自平衡机器人小车 *难度:中 *耗时:2小时 *制作者: *简介: 两轮自平衡小车是一个集多种功能于一体的综合系统,是自动控制理论与动力学理论及技术相结合的研究课题,其关键问题是在完成自身平衡的同时,还能够适应各种环境下的控制任务。本次教程我们使用Microduino产品模块快速搭建一个可以用遥控板控制的自平衡机器人小车,玩家可以迅速上手,并且看到小车运动和平衡的效果,玩家们可以在制作结束后,继续更深一步的智能控制部分的研究。 ==材料清单== *Microduino设备 {|class="wikitable" |- |模块||数量||功能 |- |[[Microduino-Core+/zh]]||1||核心板 |- |[[Microduino-USBTTL/zh]] ||1||下载程序 |- |[[Microduino-nRF24/zh]] ||1||无线通信 |- |[[Microduino-Robot/zh]] ||1||驱动连接地板 |- |[[Microduino-Stepper/zh]] ||2||驱动步进电机 |} *其他设备 {|class="wikitable" |- |模块||数量||功能 |- |2.4G天线||1||2.4G通讯 |- |固定支架||1||固定支撑 |- |尼龙螺丝||4||固定 |- |尼龙螺母||12||固定 |- |电池盒 ||1||装载电池 |- |电池 ||2||供电 |- |Micro-USB数据线 ||1||串口通信,下载程序 |- |车轴 ||2||连接车轮 |- |车轮子 ||2||结构 |- |步进电机 ||2||驱动车轮 |} *Joypad材料 {|class="wikitable" |- |模块||数量||功能 |- |[[Microduino-Core]]||1||核心 |- |[[Microduino-nRF24]]||1||无线通讯 |- |[[Microduino-Joypad]]||1||遥控器 |- |[[Microduino-TFT]]||1||显示 |- |[[Microduino-USBTTL]]||1||下载程序 |- |锂电池 ||1||供电 |- |亚克力面板||1||面板 |- |尼龙柱 ||4||固定 |- |长尼龙螺丝 ||4||固定 |- |短尼龙螺丝 ||4||固定 |- |尼龙螺母 ||4||固定 |- |海绵板 ||1||固定 |} [[File:平衡车物料.jpg||600px|center|thumb]] ==实验原理== *PID原理 PID在自动控制领域有着极其重要的作用,作为最早实用化的控制技术已经有70多年的历史,近几年一些创客们自制的一些很酷的东西,如:四轴飞行器,自平衡车等等都离不开它的身影。 首先了解什么是PID。PID实指“比例proportional”、“积分integral”、“微分derivative”,如果我们要求被控制的对象最终趋于一个稳定的结果,一般就可以使用PID算法。 假设说,有一辆速度为1m/s的小车,我们要求他的速度改变为5m/s,要完成这样的一件事,我们必须要有: *小车驱动装置(用程序控制它输出多大的电压,电压决定驱动的马力); *被驱动器控制的部分(即小车); *检测当前速度的装置(当前速度与目标速度的差称为误差); 本来,我们可以给小车一个驱动力让小车加速,直到检测到小车速度达到5m/s,撤去驱动力。但是,这样做会带来几个问题: 1)当小车速度达到5m/s时,从装置检测到这个速度,通知控制器,让控制器改变输出的电压,这一个过程需要耗费一定时间,在这个时间里面,小车速度可能增加了不少。 2)撤去驱动力后,外界条件如摩擦会让小车速度进一步改变。 然而,PID算法可以在一定误差内解决这些问题。 使用PID算法时,大致是这样的。每一个采样周期,通过速度检测装置获得当前速度,传入程序,通过程序计算得到电压控制小车得到新速度。下一个采样周期又把新速度传入,获得新电压,再传入速度,再获得电压,如此反复。 PID算法的关键,是如何根据当前得到的速度值,输出一个“恰当”的电压,以致小车最终能够趋于稳定。 PID算法采用比例,积分,微分(Proportion Integral Differential)三种方法进行控制。三种方法都有自己对应的一个常量(pconst,iconst,dconst)。这三个变量都需要在实验中多次尝试得出。用数学公式表达PID算法如下图所示: 此处:e = 期望值 – 输入值 [[File:PIDtheory.jpg||600px|center|thumb]] 平衡车之所以可以自己掌握平衡,首先通过Microduino-10DOF模块的加速度和陀螺仪测出相应的姿态数据,然后利用kalman滤波算法得出当前平衡车的角度。平衡的角度是180度,如果测出的角度偏离180,PID算法会调整输出相应的PWM值给电机,从而保持小车平衡。 PID原理有点像锅炉房里烧锅炉,首先定下来锅炉的恒定温度,比如26摄氏度,锅炉房里的墙上有一个温度计,能够实时测得锅炉的实时温度。锅炉房里通常有个老大爷时不时(每十分钟看一次)的看着墙上的温度计,如果温度高了就给锅炉降温,低了就给锅炉升温。如果让一个没有经验的年轻小伙子来管理锅炉的温度,可以想象温度表的值会上下浮动的,有经验的老大爷会把这个浮动降到最低。其实PID就是这个烧锅炉的例子,在代码中就有这个故事的影子: 1)规定的26度就是setpoint 2)当前的温度就是CurrentAngle 3)实际值与26度的偏差就是error 4)没有经验的小伙子有点像PID中的P 5)有经验的老大爷相当于PID了 6)每十分钟看一次相当于PID计算的周期时间 PID的主要代码: <source lang="cpp"> // PD的实施。 DT是毫秒 float stabilityPDControl(float DT, float input, float setPoint, float Kp, float Kd) { float error; float output; error = setPoint - input; // Kd的两部分实施 //仅使用输入(传感器)的一部分而不是设定值输入(T-2)最大的一个 //而第二个使用该设定值 output = Kp * error + (Kd * (setPoint - setPointOld) - Kd * (input - PID_errorOld2)) / DT; //Serial.print(Kd*(error-PID_errorOld));Serial.print("\t"); PID_errorOld2 = PID_errorOld; PID_errorOld = input; // 误差为Kd值是唯一的输入组件 setPointOld = setPoint; return(output); } //P控制实现。 float speedPControl(float input, float setPoint, float Kp) { float error; error = setPoint - input; return(Kp * error); } </source> 本套件利用陀螺仪和加速度传感器(Microduino-10DOF/zh)来检测车体态的变化,并利用步进电机控制核心(Microduino-Stepper/zh),精确地驱动电机进行相应的调整,以保持系统的平衡。 [[File:PIDtheory1.jpg||600px|center|thumb]] *主要传感器 [[Microduino-10DOF]] ==文档== ==调试过程== 将Microduino-Core+与Microduino-USBTTL叠加(无上下顺序),通过USB数据线与电脑连接起来 [[File:download1.jpg||600px|center|thumb]] 确认你搭建了Microduino的开发环境,否则参考附录1-Arduino IDE安装指导。 [[File:Gettingstarted.jpg||600px|center|thumb]] 打开Arduino IDE编程软件,点击 【文件】->【打开】 [[File:Dl1.jpg||600px|center|thumb]] 浏览到项目程序地址,点击“Joypad_Balance_Reception.ino”程序打开 [[File:Balancecaropen1.jpg||600px|center|thumb]] [[File:Balancecaropen2.jpg||600px|center|thumb]] 点击“工具”,在板选项里面选择板卡(Microduino-Core+),在处理器选项里面选择处理器(Atmega644pa@16M,5V),再在端口选项里面选择正确的端口号,然后直接烧录程序 [[File:WiFiStationopen4.jpg||600px|center|thumb]] *平衡车骨架搭建 [[File:平衡车步骤.jpg||600px|center|thumb]] 完成这一步平衡车就搭建完成了 ====Joypad搭建==== [[File:Joypad步骤.jpg|center|600px]] **注意:图片由于页面压缩效果不佳,请点击查看大图. *'''Step 1''':给Joypad的Microduino-CorRF下载程序。 **打开MultiWii_CoreRF中的【Joypad_RC】程序,在编译结束后,选择好板卡和端口进行直接下载。 *'''Step 2''':将Microduino-TFT从Microduino-Joypad面板后面卡进Microduino-Joypad面板上,用尼龙螺丝固定,注意Microduino-TFT安装方向。 *'''Step 3''':先在图示位置安装尼龙柱并在Joypad反面用尼龙螺母固定尼龙柱(尼龙柱由两个小尼龙柱组合而成)。再把2.4G天线插在Microduino-CoreRF模块上,并把Microduino-CoreRF插入在Microduino-Joypad底板上的Upin27任意一个接口上。 *'''Step 4''':将Microduino-TFT与Microduino-Joypad通过转接线连接起来,接口有防差错设计,转接线插反就会插不进去 *'''Step 5''':将电池上面的开关拨到“Dry bat(1.5V)”的一边,电池(7号)装到电池盒里板上,注意正负极别装反了,电池盒标注了正负极;打开Joypad右边的开关观察是否供电,若无请用USB数据线接入左边的MicroUSB接口来激活系统。 |- |也可以不用电池,直接通过USB线接入左边的MicroUSB来供电。 *'''Step 6''':用塑料螺丝将底板和面板固定;先将遥感帽安装在摇杆上,按钮帽安装在按钮键上,再盖上上板用尼龙螺丝固定。(若按键与上板的按键口不好连接,可先将按键插入按键口,再与底板按键连接)。 *'''Step 7''':你可以打开侧面电源开关,观察供电是否正常,是否正常进入系统。 *自平衡小车和Joypad测试 Joypad操作说明 [[File:Joypadtest.jpg||300px|center|thumb]] *左上边是油门控制开关,打开(拨到上面),才能进行控制,你可以摇动摇杆,观察屏幕的变化。 *右边开关是精度调整开关,开关拨到上面可以最大幅度控制,否则只能小幅度控制了,小幅度有助于稳定控制。 *左边摇杆本次未使用。 *右边摇杆在垂直方向上控制前后方向移动,往上向前,往下向后,在水平方向上控制左右方向移动。 ==Joypad开机设置== [[File:Joypadtest1.jpg||300px|center|thumb]] 打开遥控器电源开关,按下复位按键(左边USB接口右边那个)进入系统,请在4S内按下【key1】按键,进入遥控器校准和控制选择模式。 360度最大幅度旋转两个摇杆,遥控板会读入摇杆的位置数据,摇动至示数不再变化即可 [[File:Joypadtest2.jpg||300px|center|thumb]] 选择控制模式,可以通过【key3】按键来选择是控制四轴飞行器(Quad.)还是机器人(Robot),Robot模式可控制自平衡车和BOXZ mini,黑色表示选中。因此我们需要选择Robot模式。还可以通过【key4】按键来选择是否是体感控制模式,如果选择体感模式,你必须叠加Microduino-10DOF模块,选择“MPU ON”。如果是摇杆控制模式,选择“MPU OFF”。 这次搭建没有使用10DOF模块,因此选择MPU OFF模式; [[File:Joypadtest3.jpg||300px|center|thumb]] 选择完成后,通过【key2】按键退出配置,进入操作 [[File:Joypadtest4.jpg||300px|center|thumb]] 将左上边控制开关打开(拨到上面),才能进行控制,你可以摇动摇杆,观察屏幕的变化 [[File:Joypadtest5.jpg||300px|center|thumb]] 右边开关是幅度调节模式,开关拨到上面可以最大幅度控制Robot,否则只能小幅度控制。如果使用小幅度控制小车,右边摇杆拨到最大位置,小车速度也只能小范围变化,这样有助于稳定控制 [[File:Joypadtest6.jpg||300px|center|thumb]] 当启动小车时,只需要用到右边的摇杆,摇杆的方向和平衡车的方向一致,你可以尝试摇杆控制是否正确。 测试通过后,就可以打开平衡车上Microduino-Robot底板上的电源开关,拨到ON(左边),如果可以看到核心板上的红色led亮,说明供电正常。这样制作就完成了,可以愉快的玩耍了 [[File:Joypadtest7.jpg||300px|center|thumb]] ==注意问题== *下载程序时候最好只叠加core(core+)和USBTTL,虽然本次搭建涉及的nRF24不会引起冲突,但是别的通信模块有时会造成串口冲突,养成好习惯。 *Core+要叠在nRF24,USB的底下,紧贴ROBOT板。 *锂电池正负极别接错了,否则会烧坏电路。 *调试好后,实际运行时不要使用USB供电,供电电压不足,请使用电池 ==程序说明== ==Joypad程序及说明== Joypad_RC.ino <source lang="cpp"> #include "Arduino.h" #include "def.h" #include "time.h" #include "bat.h" #if defined(__AVR_ATmega1284P__) || defined(__AVR_ATmega644P__) || defined(__AVR_ATmega128RFA1__) #include "mpu.h" #endif #include "joy.h" #include "key.h" #include "data.h" #include "nrf.h" #include "mwc.h" #include "tft.h" #include "eep.h" #if defined(__AVR_ATmega128RFA1__) #include <ZigduinoRadio.h> #endif //joypad================================ #include <Joypad.h> //eeprom================================ #include <EEPROM.h> //TFT=================================== #include <Adafruit_GFX.h> // Core graphics library #include <Adafruit_ST7735.h> // Hardware-specific #include <SPI.h> //rf==================================== #include <RF24Network.h> #include <RF24.h> #if defined(__AVR_ATmega1284P__) || defined(__AVR_ATmega644P__) || defined(__AVR_ATmega128RFA1__) //MPU=================================== #include "Wire.h" #include "I2Cdev.h" #include "MPU6050_6Axis_MotionApps20.h" #endif //spi=================================== #include <SPI.h> void setup() { // initialize serial communication at 115200 bits per second: #ifdef Serial_DEBUG Serial.begin(115200); delay(100); Serial.println("========hello========"); #endif //--------------- key_init(); //--------------- #ifdef Serial_DEBUG Serial.println("\n\r EEPROM READ..."); #endif eeprom_read(); //--------------- #ifdef Serial_DEBUG Serial.println("\n\r TFT INIT..."); #endif TFT_init(true, tft_rotation); //--------------- #ifdef Serial_DEBUG Serial.println("\n\r TFT BEGIN..."); #endif TIME1 = millis(); while (millis() - TIME1 < interval_TIME1) { TFT_begin(); if (!Joypad.readButton(CH_SWITCH_1)) { #ifdef Serial_DEBUG Serial.println("\n\rCorrect IN..."); #endif //--------------- #ifdef Serial_DEBUG Serial.println("\n\r TFT INIT..."); #endif TFT_init(false, tft_rotation); while (1) { if (!TFT_config()) break; } #ifdef Serial_DEBUG Serial.println("\n\rCorrect OUT..."); #endif //--------------- #ifdef Serial_DEBUG Serial.println("\n\r EEPROM WRITE..."); #endif eeprom_write(); } } //--------------- #ifdef Serial_DEBUG Serial.println("\n\r TFT CLEAR..."); #endif TFT_clear(); //--------------- #ifdef Serial_DEBUG Serial.println("\n\r TFT READY..."); #endif TFT_ready(); //---------------.l if (mode_protocol) //Robot { SPI.begin(); //初始化SPI总线 radio.begin(); network.begin(/*channel*/ nrf_channal, /*node address*/ this_node); } else //QuadCopter { unsigned long _channel; #if !defined(__AVR_ATmega128RFA1__) switch (mwc_channal) { case 0: _channel = 9600; break; case 1: _channel = 19200; break; case 2: _channel = 38400; break; case 3: _channel = 57600; break; case 4: _channel = 115200; break; } #else if _channel = mwc_channal; #endif mwc_port.begin(_channel); } //--------------- #ifdef Serial_DEBUG Serial.println("===========start==========="); #endif #if defined(__AVR_ATmega1284P__) || defined(__AVR_ATmega644P__) || defined(__AVR_ATmega128RFA1__) if (mode_mpu) initMPU(); //initialize device #endif } void loop() { // unsigned long time = millis(); #if defined(__AVR_ATmega1284P__) || defined(__AVR_ATmega644P__) || defined(__AVR_ATmega128RFA1__) //MPU-------------------------------- if (mode_mpu) getMPU(); #endif //DATA_begin------------------------------ data_begin(); //DATA_send------------------------------- if (millis() < time2) time2 = millis(); if (millis() - time2 > interval_time2) { if (mode_protocol) nrf_send(); //Robot else data_send(); //QuadCopter time2 = millis(); } //节点查错------------------------------- vodebug(); //BAT-------------------------------- if (time3 > millis()) time3 = millis(); if (millis() - time3 > interval_time3) { vobat(); time3 = millis(); } //TFT------------------------------------ TFT_run(); //=================================== // time = millis() - time; // Serial.println(time, DEC); //loop time } </cpp> BAT.h <source lang="cpp"> int8_t _V_bat = _V_min; boolean mcu_voltage = true; // 5.0 or 3.3 #define _V_fix 0.2 //fix battery voltage #define _V_math(Y) (_V_fix+((Y*analogRead(PIN_bat)/1023.0f)/(33.0f/(51.0f+33.0f)))) void vobat() { //_V_bat=10*((voltage*analogRead(PIN_bat)/1023.0f)/(33.0f/(51.0f+33.0f))); _V_bat = _V_math(mcu_voltage ? 50 : 33); _V_bat = constrain(_V_bat, _V_min, _V_max); #ifdef Serial_DEBUG Serial.print("_V_bat: "); Serial.println(_V_bat); #endif } </source> data.h <source lang="cpp"> #include "Arduino.h" byte inBuf[16]; int16_t outBuf[8] = { Joy_MID, Joy_MID, Joy_MID, Joy_MID, Joy_MID, Joy_MID, Joy_MID, Joy_MID }; boolean AUX[4] = {0, 0, 0, 0}; //====================================== void data_begin() { Joy(); if (mode_protocol) //Robot { if (!sw_l) { Joy_x = Joy_MID; Joy_y = Joy_MID; Joy1_x = Joy_MID; Joy1_y = Joy_MID; } } else //QuadCopter { if (!sw_l) Joy_y = Joy_MID - Joy_maximum; } //but--------------------------------- for (uint8_t a = 0; a < 4; a++) { if (key_get(a, 1)) AUX[a] = !AUX[a]; } outBuf[0] = Joy1_x; outBuf[1] = Joy1_y; outBuf[2] = Joy_x; outBuf[3] = Joy_y; outBuf[4] = map(AUX[0], 0, 1, Joy_MID - Joy_maximum, Joy_MID + Joy_maximum); outBuf[5] = map(AUX[1], 0, 1, Joy_MID - Joy_maximum, Joy_MID + Joy_maximum); outBuf[6] = map(AUX[2], 0, 1, Joy_MID - Joy_maximum, Joy_MID + Joy_maximum); outBuf[7] = map(AUX[3], 0, 1, Joy_MID - Joy_maximum, Joy_MID + Joy_maximum); } </source> def.h <source lang="cpp"> #include "Arduino.h" //DEBUG----------- #define Serial_DEBUG //MWC------------- uint8_t mwc_channal = 11; //RF channel #if defined(__AVR_ATmega32U4__) #define mwc_port Serial1 //Serial1 is D0 D1 #elif defined(__AVR_ATmega128RFA1__) #define mwc_port ZigduinoRadio //RF #else #define mwc_port Serial //Serial is D0 D1 #endif //nRF------------- #define interval_debug 2000 //节点查错间隔 uint8_t nrf_channal = 70; //0~125 //Battery--------- #define PIN_bat A7 //BAT #define _V_max 41 //锂电池满电电压4.2V #define _V_min 36 //锂电池没电电压3.7V #if defined(__AVR_ATmega1284P__) || defined(__AVR_ATmega644P__) || defined(__AVR_ATmega128RFA1__) //MPU------------- #define MPU_maximum 70 #endif //Time------------ #define interval_TIME1 2000 //setup delay #define interval_time2 40 //send interval #define interval_time3 1000 //battery interval </source> eep.h <source lang="cpp"> #include "Arduino.h" #include <EEPROM.h> #define EEPROM_write(address, p) {int i = 0; byte *pp = (byte*)&(p);for(; i < sizeof(p); i++) EEPROM.write(address+i, pp[i]);} #define EEPROM_read(address, p) {int i = 0; byte *pp = (byte*)&(p);for(; i < sizeof(p); i++) pp[i]=EEPROM.read(address+i);} struct config_type { int16_t eeprom_correct_min[4]; int16_t eeprom_correct_max[4]; uint8_t eeprom_Joy_deadzone_val; #if defined(__AVR_ATmega1284P__) || defined(__AVR_ATmega644P__) || defined(__AVR_ATmega128RFA1__) boolean eeprom_mode_mpu; #endif boolean eeprom_mode_protocol; uint8_t eeprom_mwc_channal; uint8_t eeprom_nrf_channal; boolean eeprom_tft_theme; boolean eeprom_tft_rotation; boolean eeprom_mcu_voltage; }; //====================================== void eeprom_read() { //EEPROM读取赋值 config_type config_readback; EEPROM_read(0, config_readback); for (uint8_t a = 0; a < 4; a++) { joy_correct_min[a] = config_readback.eeprom_correct_min[a]; joy_correct_max[a] = config_readback.eeprom_correct_max[a]; } Joy_deadzone_val = config_readback.eeprom_Joy_deadzone_val; mode_protocol = config_readback.eeprom_mode_protocol; #if defined(__AVR_ATmega1284P__) || defined(__AVR_ATmega644P__) || defined(__AVR_ATmega128RFA1__) mode_mpu = config_readback.eeprom_mode_mpu; #endif mwc_channal = config_readback.eeprom_mwc_channal; nrf_channal = config_readback.eeprom_nrf_channal; tft_theme = config_readback.eeprom_tft_theme; tft_rotation = config_readback.eeprom_tft_rotation; mcu_voltage = config_readback.eeprom_mcu_voltage; } void eeprom_write() { // 定义结构变量config,并定义config的内容 config_type config; for (uint8_t a = 0; a < 4; a++) { config.eeprom_correct_min[a] = joy_correct_min[a]; config.eeprom_correct_max[a] = joy_correct_max[a]; } config.eeprom_Joy_deadzone_val = Joy_deadzone_val; config.eeprom_mode_protocol = mode_protocol; #if defined(__AVR_ATmega1284P__) || defined(__AVR_ATmega644P__) || defined(__AVR_ATmega128RFA1__) config.eeprom_mode_mpu = mode_mpu; #endif config.eeprom_mwc_channal = mwc_channal; config.eeprom_nrf_channal = nrf_channal; config.eeprom_tft_theme = tft_theme; config.eeprom_tft_rotation = tft_rotation; config.eeprom_mcu_voltage = mcu_voltage; // 变量config存储到EEPROM,地址0写入 EEPROM_write(0, config); } </source> joy.h <source lang="cpp"> #include "Arduino.h" #include <Joypad.h> //Joy------------- //1000~2000 uint8_t Joy_deadzone_val = 10; #define Joy_s_maximum 200 //MAX 300 #define Joy_maximum 450 //MAX 500 #define Joy_MID 1500 //1500 boolean mode_mpu, mode_protocol; //{(0: 0 is mwc, 1 is nrf),(1: 0 is mpu, 1 is no mpu)} int16_t joy_correct_max[4], joy_correct_min[4]; int16_t Joy_x, Joy_y, Joy1_x, Joy1_y; int16_t s_lig, s_mic; boolean Joy_sw, Joy1_sw; boolean but1, but2, but3, but4; boolean sw_l, sw_r; //====================================== int16_t Joy_dead_zone(int16_t _Joy_vol) { if (abs(_Joy_vol) > Joy_deadzone_val) return ((_Joy_vol > 0) ? (_Joy_vol - Joy_deadzone_val) : (_Joy_vol + Joy_deadzone_val)); else return 0; } int16_t Joy_i(int16_t _Joy_i, boolean _Joy_b, int16_t _Joy_MIN, int16_t _Joy_MAX) { int16_t _Joy_a; switch (_Joy_i) { case 0: _Joy_a = Joy_dead_zone(Joypad.readJoystickX()); break; case 1: _Joy_a = Joypad.readJoystickY(); //throt break; case 2: _Joy_a = Joy_dead_zone(Joypad.readJoystick1X()); break; case 3: _Joy_a = Joy_dead_zone(Joypad.readJoystick1Y()); break; } if (_Joy_b) { if (_Joy_a < 0) _Joy_a = map(_Joy_a, joy_correct_min[_Joy_i], 0, _Joy_MAX, Joy_MID); else _Joy_a = map(_Joy_a, 0, joy_correct_max[_Joy_i], Joy_MID, _Joy_MIN); if (_Joy_a < _Joy_MIN) _Joy_a = _Joy_MIN; if (_Joy_a > _Joy_MAX) _Joy_a = _Joy_MAX; } return _Joy_a; } void Joy() { sw_l = Joypad.readButton(CH_SWITCH_L); sw_r = Joypad.readButton(CH_SWITCH_R); //------------------------------------ //s_lig=Joypad.readLightSensor(); //s_mic=Joypad.readMicrophone(); //------------------------------------ Joy_sw = Joypad.readButton(CH_JOYSTICK_SW); Joy1_sw = Joypad.readButton(CH_JOYSTICK1_SW); //------------------------------------ but1 = Joypad.readButton(CH_SWITCH_1); but2 = Joypad.readButton(CH_SWITCH_2); but3 = Joypad.readButton(CH_SWITCH_3); but4 = Joypad.readButton(CH_SWITCH_4); #if defined(__AVR_ATmega1284P__) || defined(__AVR_ATmega644P__) || defined(__AVR_ATmega128RFA1__) //==================================== int16_t y[3]; //MPU--------------------------------- if (mode_mpu) //MPU--------------------------------- { for (uint8_t a = 0; a < 3; a++) { y[a] = ypr[a] * 180 / M_PI; if (y[a] > MPU_maximum) y[a] = MPU_maximum; if (y[a] < -MPU_maximum) y[a] = -MPU_maximum; } } #endif if (Joypad.readButton(CH_SWITCH_R)) { Joy_x = Joy_i(0, true, Joy_MID - Joy_maximum, Joy_MID + Joy_maximum); Joy_y = Joy_i(1, true, Joy_MID - Joy_maximum, Joy_MID + Joy_maximum); #if defined(__AVR_ATmega1284P__) || defined(__AVR_ATmega644P__) || defined(__AVR_ATmega128RFA1__) if (mode_mpu) //MPU--------------------------------- { Joy1_x = map(y[2], -MPU_maximum, MPU_maximum, Joy_MID - Joy_maximum, Joy_MID + Joy_maximum); Joy1_y = map(y[1], -MPU_maximum, MPU_maximum, Joy_MID - Joy_maximum, Joy_MID + Joy_maximum); } else #endif { Joy1_x = Joy_i(2, true, Joy_MID - Joy_maximum, Joy_MID + Joy_maximum); Joy1_y = Joy_i(3, true, Joy_MID - Joy_maximum, Joy_MID + Joy_maximum); } } else { Joy_x = Joy_i(0, true, Joy_MID - Joy_s_maximum, Joy_MID + Joy_s_maximum); Joy_y = Joy_i(1, true, mode_protocol ? Joy_MID - Joy_s_maximum : Joy_MID - Joy_maximum, mode_protocol ? Joy_MID + Joy_s_maximum : Joy_MID + Joy_maximum); // Robot,QuadCopter #if defined(__AVR_ATmega1284P__) || defined(__AVR_ATmega644P__) || defined(__AVR_ATmega128RFA1__) if (mode_mpu) //MPU--------------------------------- { Joy1_x = map(y[2], -MPU_maximum, MPU_maximum, Joy_MID - Joy_s_maximum, Joy_MID + Joy_s_maximum); Joy1_y = map(y[1], -MPU_maximum, MPU_maximum, Joy_MID - Joy_s_maximum, Joy_MID + Joy_s_maximum); } else #endif { Joy1_x = Joy_i(2, true, Joy_MID - Joy_s_maximum, Joy_MID + Joy_s_maximum); Joy1_y = Joy_i(3, true, Joy_MID - Joy_s_maximum, Joy_MID + Joy_s_maximum); } } } </source> key.h <source lang="cpp"> #include "arduino.h" uint8_t key_pin[4] = {CH_SWITCH_1, CH_SWITCH_2, CH_SWITCH_3, CH_SWITCH_4}; //按键1 2 3 4 boolean key_status[4]; //按键 boolean key_cache[4]; //检测按键松开缓存 void key_init() { for (uint8_t a = 0; a < 4; a++) { key_status[a] = LOW; key_cache[a] = HIGH; } } boolean key_get(uint8_t _key_num, boolean _key_type) { key_cache[_key_num] = key_status[_key_num]; //缓存作判断用 key_status[_key_num] = !Joypad.readButton(key_pin[_key_num]); //触发时 switch (_key_type) { case 0: if (!key_status[_key_num] && key_cache[_key_num]) //按下松开后 return true; else return false; break; case 1: if (key_status[_key_num] && !key_cache[_key_num]) //按下松开后 return true; else return false; break; } } </source> mpu.h <source lang="cpp"> #if defined(__AVR_ATmega1284P__) || defined(__AVR_ATmega644P__) || defined(__AVR_ATmega128RFA1__) #include "Wire.h" #include "I2Cdev.h" #include "MPU6050_6Axis_MotionApps20.h" MPU6050 mpu; //MPU------------- #define MPU_maximum 70 // MPU control/status vars boolean dmpReady = false; // set true if DMP init was successful uint8_t mpuIntStatus; // holds actual interrupt status byte from MPU uint8_t devStatus; // return status after each device operation (0 = success, !0 = error) uint16_t packetSize; // expected DMP packet size (default is 42 bytes) uint16_t fifoCount; // count of all bytes currently in FIFO uint8_t fifoBuffer[64]; // FIFO storage buffer // orientation/motion vars Quaternion q; // [w, x, y, z] quaternion container VectorInt16 aa; // [x, y, z] accel sensor measurements VectorFloat gravity; // [x, y, z] gravity vector float ypr[3]; // [yaw, pitch, roll] yaw/pitch/roll container and gravity vector void initMPU() { Wire.begin(); #ifdef Serial_DEBUG Serial.println(F("Initializing I2C devices...")); #endif mpu.initialize(); // verify connection #ifdef Serial_DEBUG Serial.println(F("Testing device connections...")); #endif if (mpu.testConnection()) { #ifdef Serial_DEBUG Serial.println("MPU6050 connection successful"); #endif } #ifdef Serial_DEBUG else Serial.println(F("MPU6050 connection failed")); #endif // load and configure the DMP #ifdef Serial_DEBUG Serial.println(F("Initializing DMP...")); #endif devStatus = mpu.dmpInitialize(); // make sure it worked (returns 0 if so) if (devStatus == 0) { // turn on the DMP, now that it's ready #ifdef Serial_DEBUG Serial.println(F("Enabling DMP...")); #endif mpu.setDMPEnabled(true); mpuIntStatus = mpu.getIntStatus(); // set our DMP Ready flag so the main loop() function knows it's okay to use it // Serial.println(F("DMP ready! Waiting for first interrupt...")); dmpReady = true; // get expected DMP packet size for later comparison packetSize = mpu.dmpGetFIFOPacketSize(); } else { // ERROR! // 1 = initial memory load failed // 2 = DMP configuration updates failed // (if it's going to break, usually the code will be 1) #ifdef Serial_DEBUG Serial.print(F("DMP Initialization failed (code ")); Serial.print(devStatus); Serial.println(F(")")); #endif } } void getMPU() { if (!dmpReady) return; { // reset interrupt flag and get INT_STATUS byte mpuIntStatus = mpu.getIntStatus(); // get current FIFO count fifoCount = mpu.getFIFOCount(); // check for overflow (this should never happen unless our code is too inefficient) if ((mpuIntStatus & 0x10) || fifoCount == 1024) { // reset so we can continue cleanly mpu.resetFIFO(); #ifdef Serial_DEBUG Serial.println(F("FIFO overflow!")); #endif // otherwise, check for DMP data ready interrupt (this should happen frequently) } else if (mpuIntStatus & 0x02) { // wait for correct available data length, should be a VERY short wait while (fifoCount < packetSize) fifoCount = mpu.getFIFOCount(); // read a packet from FIFO mpu.getFIFOBytes(fifoBuffer, packetSize); // track FIFO count here in case there is > 1 packet available // (this lets us immediately read more without waiting for an interrupt) fifoCount -= packetSize; // display ypr angles in degrees mpu.dmpGetQuaternion(&q, fifoBuffer); mpu.dmpGetGravity(&gravity, &q); mpu.dmpGetYawPitchRoll(ypr, &q, &gravity); //Serial.print("ypr\t"); //Serial.print(ypr[0] * 180/M_PI); //Serial.print("\t"); //Serial.print(ypr[1] * 180/M_PI); //Serial.print("\t"); // Serial.println(ypr[2] * 180/M_PI); } } } #endif </source> mwc.h <source lang="cpp"> #include "Arduino.h" #if defined(__AVR_ATmega128RFA1__) #include <ZigduinoRadio.h> #endif int16_t RCin[8], RCoutA[8], RCoutB[8]; int16_t p; uint16_t read16() { uint16_t r = (inBuf[p++] & 0xFF); r += (inBuf[p++] & 0xFF) << 8; return r; } uint16_t t, t1, t2; uint16_t write16(boolean a) { if (a) { t1 = outBuf[p++] >> 8; t2 = outBuf[p - 1] - (t1 << 8); t = t1; } else t = t2; return t; } typedef unsigned char byte; byte getChecksum(byte length, byte cmd, byte mydata[]) { //三个参数分别为: 数据长度 , 指令代码 , 实际数据数组 byte checksum = 0; checksum ^= (length & 0xFF); checksum ^= (cmd & 0xFF); for (uint8_t i = 0; i < length; i++) { checksum ^= (mydata[i] & 0xFF); } return checksum; } void data_rx() { // s_struct_w((int*)&inBuf,16); p = 0; for (uint8_t i = 0; i < 8; i++) { RCin[i] = read16(); /* Serial.print("RC["); Serial.print(i+1); Serial.print("]:"); Serial.print(inBuf[2*i],DEC); Serial.print(","); Serial.print(inBuf[2*i+1],DEC); Serial.print("---"); Serial.println(RCin[i]); */ // delay(50); // delay in between reads for stability } } void data_tx() { p = 0; for (uint8_t i = 0; i < 8; i++) { RCoutA[i] = write16(1); RCoutB[i] = write16(0); /* Serial.print("RC["); Serial.print(i+1); Serial.print("]:"); Serial.print(RCout[i]); Serial.print("---"); Serial.print(RCoutA[i],DEC); Serial.print(","); Serial.print(RCoutB[i],DEC); Serial.println(""); */ // delay(50); // delay in between reads for stability } } /* if Core RF [head,2byte,0xAA 0xBB] [type,1byte,0xCC] [data,16byte] [body,1byte(from getChecksum())] Example: AA BB CC 1A 01 1A 01 1A 01 2A 01 3A 01 4A 01 5A 01 6A 01 0D ** */ void data_send() { data_tx(); #if !defined(__AVR_ATmega128RFA1__) static byte buf_head[3]; buf_head[0] = 0x24; buf_head[1] = 0x4D; buf_head[2] = 0x3C; #endif #define buf_length 0x10 //16 #define buf_code 0xC8 //200 static byte buf_data[buf_length]; for (uint8_t a = 0; a < (buf_length / 2); a++) { buf_data[2 * a] = RCoutB[a]; buf_data[2 * a + 1] = RCoutA[a]; } static byte buf_body; buf_body = getChecksum(buf_length, buf_code, buf_data); //---------------------- #if defined(__AVR_ATmega128RFA1__) mwc_port.beginTransmission(); mwc_port.write(0xaa); mwc_port.write(0xbb); mwc_port.write(0xcc); #else for (uint8_t a = 0; a < 3; a++) { mwc_port.write(buf_head[a]); } mwc_port.write(buf_length); mwc_port.write(buf_code); #endif for (uint8_t a = 0; a < buf_length; a++) { mwc_port.write(buf_data[a]); } mwc_port.write(buf_body); #if defined(__AVR_ATmega128RFA1__) mwc_port.endTransmission(); #endif } </source> nrf.h <source lang="cpp"> #include "Arduino.h" #include <RF24Network.h> #include <RF24.h> #include <SPI.h> // nRF24L01(+) radio attached using Getting Started board RF24 radio(9, 10); //ce,cs RF24Network network(radio); #define this_node 0 //设置本机ID #define other_node 1 //-------------------------------- struct send_a //发送 { uint32_t ms; uint16_t rf_CH0; uint16_t rf_CH1; uint16_t rf_CH2; uint16_t rf_CH3; uint16_t rf_CH4; uint16_t rf_CH5; uint16_t rf_CH6; uint16_t rf_CH7; }; struct receive_a //接收 { uint32_t node_ms; }; //-------------------------------- unsigned long node_clock, node_clock_debug, node_clock_cache = 0; //节点运行时间、节点响应检查时间、节点时间缓存 //debug-------------------------- boolean node_clock_error = false; //节点响应状态 unsigned long time_debug = 0; //定时器 //====================================== void vodebug() { if (millis() - time_debug > interval_debug) { node_clock_error = boolean(node_clock == node_clock_debug); //一定时间内,节点返回的运行时间若不变则有问题 node_clock_debug = node_clock; time_debug = millis(); } } void nrf_send() { #ifdef Serial_DEBUG Serial.print("Sending..."); #endif send_a sen = { millis(), outBuf[0], outBuf[1], outBuf[2], outBuf[3], outBuf[4], outBuf[5], outBuf[6], outBuf[7] }; //把这些数据发送出去,对应前面的发送数组 RF24NetworkHeader header(other_node); if (network.write(header, &sen, sizeof(sen))) { #ifdef Serial_DEBUG Serial.print("Is ok."); #endif delay(50); network.update(); // If it's time to send a message, send it! while ( network.available() ) { // If so, grab it and print it out RF24NetworkHeader header; receive_a rec; network.read(header, &rec, sizeof(rec)); node_clock = rec.node_ms; //运行时间赋值 } } #ifdef Serial_DEBUG else Serial.print("Is failed."); Serial.println(""); #endif } </source> tft.h <source lang="cpp"> #include "Arduino.h" #include <Adafruit_GFX.h> // Core graphics library #include <Adafruit_ST7735.h> // Hardware-specific library #include <SPI.h> Adafruit_ST7735 tft = Adafruit_ST7735(5, 4, -1); //cs,dc,rst //-------字体设置,大、中、小 #define setFont_M tft.setTextSize(2) #define setFont_S tft.setTextSize(0) #define tft_width 128 #define tft_height 160 boolean tft_theme = false; //0 is white,1 is black boolean tft_rotation = 1; #define TFT_TOP ST7735_BLACK #define TFT_BUT ST7735_WHITE uint16_t tft_colorA = TFT_BUT; uint16_t tft_colorB = TFT_TOP; uint16_t tft_colorC = 0x06FF; uint16_t tft_colorD = 0xEABF; #define tft_bat_x 24 #define tft_bat_y 12 #define tft_bat_x_s 2 #define tft_bat_y_s 6 #define tft_font_s_height 8 #define tft_font_m_height 16 #define tft_font_l_height 24 #define _Q_x 33 #define _Q_y 36 #define _W_x 93 #define _W_y 5 #define _Q_font_x 2 #define _Q_font_y (_Q_y - 1) int8_t tft_cache = 1; //====================================== void TFT_clear() { tft.fillScreen(tft_colorB); } void TFT_init(boolean _init, boolean _rot) { tft_colorB = tft_theme ? TFT_TOP : TFT_BUT; tft_colorA = tft_theme ? TFT_BUT : TFT_TOP; if (_init) { tft.initR(INITR_BLACKTAB); // initialize a ST7735S chip, black tab // Serial.println("init"); tft.fillScreen(tft_colorB); if (_rot) tft.setRotation(2); } tft.fillRect(0, 0, tft_width, 40, tft_colorA); tft.setTextColor(tft_colorB); setFont_M; tft.setCursor(26, 6); tft.print("Joypad"); setFont_S; tft.setCursor(32, 24); tft.print("Microduino"); tft.fillRect(0, 40, tft_width, 120, tft_colorB); } void TFT_begin() { setFont_S; tft.setTextColor(tft_colorA); tft.setCursor(_Q_font_x, 44); tft.println("[key1] enter config"); setFont_M; tft.setCursor(4, 150); for (uint8_t a = 0; a < (millis() - TIME1) / (interval_TIME1 / 10); a++) { tft.print("-"); } } int8_t menu_num_A = 0; int8_t menu_num_B = 0; int8_t menu_sta = 0; #if defined(__AVR_ATmega1284P__) || defined(__AVR_ATmega644P__) || defined(__AVR_ATmega128RFA1__) char *menu_str_a[5] = { "Joystick Config", "Protocol Config", "System Config", "Gyroscope Config", "Exit" }; #else char *menu_str_a[4] = { "Joystick Config", "Protocol Config", "System Config", "Exit" }; #endif #if defined(__AVR_ATmega1284P__) || defined(__AVR_ATmega644P__) || defined(__AVR_ATmega128RFA1__) char *menu_str_b[4][3] = { {"Joystick Correct.", "Dead Zone config"}, {"Mode", "Quadrotor Channel", "nRF24 Channel"}, {"TFT Theme", "TFT Rotation", "MCU Voltage"}, {"Gyroscope OFF", "Gyroscope ON"} }; #else char *menu_str_b[3][3] = { {"Joystick Correct.", "Dead Zone config"}, {"Mode", "Quadrotor Channel", "nRF24 Channel"}, {"TFT Theme", "TFT Rotation", "MCU Voltage"}, }; #endif void TFT_menu(int8_t _num, char *_data) { tft.drawRect(7, 49 + 15 * _num, 114, 16, tft_colorA); tft.setCursor(10, 54 + 15 * _num); tft.print(_data); } void TFT_menu(int8_t _num, int16_t _data) { tft.drawRect(7, 49 + 15 * _num, 114, 16, tft_colorA); tft.setCursor(10, 54 + 15 * _num); tft.print(_data); } void TFT_cursor(int8_t _num) { tft.drawLine(1, 51 + 15 * _num, 4, 56 + 15 * _num, tft_colorA); tft.drawLine(4, 57 + 15 * _num, 1, 62 + 15 * _num, tft_colorA); tft.drawLine(1, 51 + 15 * _num, 1, 62 + 15 * _num, tft_colorA); } boolean return_menu = false; boolean TFT_config() { tft.setTextColor( tft_colorA); if (key_get(0, 1)) { menu_sta --; tft_cache = 1; if (menu_sta <= 0) menu_num_B = 0; //zero } if (key_get(1, 1)) { if (return_menu) menu_sta --; else menu_sta ++; tft_cache = 1; } if (menu_sta > 2) menu_sta = 2; if (menu_sta < 0) menu_sta = 0; return_menu = false; //------------------------------- if (tft_cache) tft.fillRect(0, 40, tft_width, 100, tft_colorB); if (menu_sta == 2) { switch (menu_num_A) { case 0: { switch (menu_num_B) { case 0: { if (tft_cache) { for (uint8_t a = 0; a < 4; a++) { joy_correct_min[a] = 0; joy_correct_max[a] = 0; } } for (uint8_t a = 0; a < 4; a++) { tft.setCursor(2, 120); tft.print("Move Joystick MaxGear"); int16_t _c = Joy_i(a, false, Joy_MID - Joy_maximum, Joy_MID + Joy_maximum); if (_c > joy_correct_max[a]) { tft.fillRect(0, 40, tft_width, 100, tft_colorB); joy_correct_max[a] = _c; } // joy_correct_max[a] = constrain(joy_correct_max[a], 0, Joy_maximum); if (_c < joy_correct_min[a]) { tft.fillRect(0, 40, tft_width, 100, tft_colorB); joy_correct_min[a] = _c; } // joy_correct_min[a] = constrain(joy_correct_min[a], -Joy_maximum, 0); } for (uint8_t d = 0; d < 2; d++) { tft.drawFastHLine(12 + 70 * d, 80, 33, tft_colorA); tft.drawFastVLine(28 + 70 * d, 64, 33, tft_colorA); // tft.fillRect(2, 90-4, 20, 12, tft_colorB); tft.drawCircle(44 + 70 * d, 80, map(joy_correct_min[0 + 2 * d], 0, -512, 1, 10), tft_colorA); tft.drawCircle(12 + 70 * d, 80, map(joy_correct_max[0 + 2 * d], 0, 512, 1, 10), tft_colorA); tft.drawCircle(28 + 70 * d, 64, map(joy_correct_min[1 + 2 * d], 0, -512, 1, 10), tft_colorA); tft.drawCircle(28 + 70 * d, 96, map(joy_correct_max[1 + 2 * d], 0, 512, 1, 10), tft_colorA); } return_menu = true; } break; case 1: { if (key_get(2, 1)) { Joy_deadzone_val--; tft.fillRect(0, 40, tft_width, 100, tft_colorB); } if (key_get(3, 1)) { Joy_deadzone_val++; tft.fillRect(0, 40, tft_width, 100, tft_colorB); } Joy_deadzone_val = constrain(Joy_deadzone_val, 0, 25); TFT_menu(0, Joy_deadzone_val); TFT_cursor(0); return_menu = true; } break; } } break; case 1: { switch (menu_num_B) { case 0: { char *menu_str_c[2] = { "Quadro.", "nRF24"}; if (key_get(2, 1) || key_get(3, 1)) { mode_protocol = !mode_protocol; tft.fillRect(0, 40, tft_width, 100, tft_colorB); } for (uint8_t c = 0; c < 2; c++) { TFT_menu(c, menu_str_c[c]); } TFT_cursor(mode_protocol); return_menu = true; } break; case 1: { #if !defined(__AVR_ATmega128RFA1__) char *menu_str_c[5] = {"9600", "19200", "38400", "57600", "115200"}; #endif if (key_get(2, 1)) { mwc_channal--; tft.fillRect(0, 40, tft_width, 100, tft_colorB); } if (key_get(3, 1)) { mwc_channal++; tft.fillRect(0, 40, tft_width, 100, tft_colorB); } #if !defined(__AVR_ATmega128RFA1__) mwc_channal = constrain(mwc_channal, 0, 4); TFT_menu(0, menu_str_c[mwc_channal]); #else mwc_channal = constrain(mwc_channal, 11, 26); TFT_menu(0, mwc_channal); #endif TFT_cursor(0); return_menu = true; } break; case 2: { if (key_get(2, 1)) { nrf_channal--; tft.fillRect(0, 40, tft_width, 100, tft_colorB); } if (key_get(3, 1)) { nrf_channal++; tft.fillRect(0, 40, tft_width, 100, tft_colorB); } nrf_channal = constrain(nrf_channal, 0, 125); TFT_menu(0, nrf_channal); TFT_cursor(0); return_menu = true; } break; } } break; case 2: { switch (menu_num_B) { case 0: { tft_theme = !tft_theme; TFT_init(true, tft_rotation); tft_cache = 1; tft.setTextColor(tft_colorA); menu_sta --; } break; case 1: { tft_rotation = !tft_rotation; TFT_init(true, tft_rotation); tft_cache = 1; tft.setTextColor(tft_colorA); menu_sta --; } break; case 2: { char *menu_str_c[2] = { "3.3V", "5.0V"}; return_menu = true; if (key_get(2, 1) || key_get(3, 1)) { mcu_voltage = !mcu_voltage; tft.fillRect(0, 40, tft_width, 100, tft_colorB); } TFT_cursor(mcu_voltage); for (uint8_t c = 0; c < 2; c++) { TFT_menu(c, menu_str_c[c]); } // tft.fillRect(0, 40, tft_width, 100,tft_colorB); } break; } } break; #if !(defined(__AVR_ATmega1284P__) || defined(__AVR_ATmega644P__)) case 3: { //mpu mode_mpu = menu_num_B; tft_cache = 1; menu_sta = 0; //back main menu menu_num_B = 0; //zero } break; #endif } } /* Serial.print(menu_sta); Serial.print(","); Serial.print(menu_num_A); Serial.print(","); Serial.println(menu_num_B); */ //---------------------------- if (menu_sta == 1) { #if defined(__AVR_ATmega1284P__) || defined(__AVR_ATmega644P__) || defined(__AVR_ATmega128RFA1__) int8_t meun_b_max[5] = {1, 2, 2, 1, 0}; #else int8_t meun_b_max[4] = {1, 2, 2, 0}; #endif if (!meun_b_max[menu_num_A]) return false; else { if (key_get(2, 1)) { tft.fillRect(0, 40, 5, 100, tft_colorB); menu_num_B--; } if (key_get(3, 1)) { tft.fillRect(0, 40, 5, 100, tft_colorB); menu_num_B++; } menu_num_B = constrain(menu_num_B, 0, meun_b_max[menu_num_A]); TFT_cursor(menu_num_B); if (tft_cache) { for (uint8_t b = 0; b < (meun_b_max[menu_num_A] + 1); b++) { TFT_menu(b, menu_str_b[menu_num_A][b]); } } } } //main menu if (menu_sta == 0) { //custer if (key_get(2, 1)) { tft.fillRect(0, 40, 5, 100, tft_colorB); menu_num_A--; } if (key_get(3, 1)) { tft.fillRect(0, 40, 5, 100, tft_colorB); menu_num_A++; } #if defined(__AVR_ATmega1284P__) || defined(__AVR_ATmega644P__) || defined(__AVR_ATmega128RFA1__) menu_num_A = constrain(menu_num_A, 0, 4); #else menu_num_A = constrain(menu_num_A, 0, 3); #endif TFT_cursor(menu_num_A); if (tft_cache) { #if defined(__AVR_ATmega1284P__) || defined(__AVR_ATmega644P__) || defined(__AVR_ATmega128RFA1__) for (uint8_t a = 0; a < 5; a++) { #else for (uint8_t a = 0; a < 4; a++) { #endif TFT_menu(a, menu_str_a[a]); } } } if (tft_cache) { //BACK tft.fillCircle(12, 149, 8, tft_colorA); tft.drawLine(11, 145, 7, 149, tft_colorB); tft.drawLine(7, 149, 11, 153, tft_colorB); tft.drawLine(7, 149, 17, 149, tft_colorB); //ENTER tft.fillCircle(12 + 20, 149, 8, tft_colorA); tft.drawLine(10 + 20, 146, 7 + 20, 149, tft_colorB); tft.drawLine(7 + 20, 149, 10 + 20, 152, tft_colorB); tft.drawLine(7 + 20, 149, 15 + 20, 149, tft_colorB); tft.drawLine(15 + 20, 146, 15 + 20, 149, tft_colorB); //PREV tft.fillCircle(127 - 12, 149, 8, tft_colorA); tft.drawLine(127 - 12, 153, 127 - 8, 149, tft_colorB); tft.drawLine(127 - 12, 153, 127 - 16, 149, tft_colorB); tft.drawLine(127 - 12, 153, 127 - 12, 145, tft_colorB); //NEXT tft.fillCircle(127 - 32, 149, 8, tft_colorA); tft.drawLine(127 - 32, 145, 127 - 28, 149, tft_colorB); tft.drawLine(127 - 32, 145, 127 - 36, 149, tft_colorB); tft.drawLine(127 - 32, 145, 127 - 32, 153, tft_colorB); } tft_cache --; if (tft_cache < 0) tft_cache = 0; return true; } //------------------ #define _C_x_S (_Q_x + 1) #define _C_x_M (_Q_x + ((_W_x + 1) / 2)) #define _C_x_E (_Q_x + _W_x - 1) char *NAME[8] = { "ROLL", "PITCH", "YAW", "THROT", "AUX1", "AUX2", "AUX3", "AUX4" }; void TFT_ready() { tft.fillRect(0, 0, 128, 26, tft_colorA); tft.drawRect(tft_width - tft_bat_x - tft_bat_x_s - 2, 2, tft_bat_x, tft_bat_y, tft_colorB); tft.drawRect(tft_width - tft_bat_x_s - 2, 2 + (tft_bat_y - tft_bat_y_s) / 2, tft_bat_x_s, tft_bat_y_s, tft_colorB); tft.setTextColor(tft_colorB); setFont_S; tft.setCursor(_Q_font_x, 3); tft.print(mode_protocol ? "nRF24" : "Quadr"); tft.print(" CHAN."); tft.print(mode_protocol ? nrf_channal : mwc_channal); tft.setCursor(_Q_font_x, 16); tft.print("Time:"); tft.setTextColor(tft_colorA); for (uint8_t a = 0; a < 8; a++) { tft.setCursor(_Q_font_x, _Q_font_y + a * 15); tft.print(NAME[a]); //------------------------------------------ tft.drawRect(_Q_x, _Q_y + a * 15, _W_x, _W_y, tft_colorA); } } boolean _a = false, _b = false; void TFT_run() { if (outBuf[3] > (Joy_MID - Joy_maximum)) { if (_a) { Joy_time[0] = millis() - Joy_time[1]; _a = false; } Joy_time[1] = millis() - Joy_time[0]; } else _a = true; if (!_b && ((Joy_time[1] / 1000) % 2)) { _b = !_b; tft.fillRect(_Q_font_x + 30, 16, 50, 7, tft_colorA); tft.setTextColor(tft_colorB); tft.setCursor(_Q_font_x + 30, 16); tft.print((Joy_time[1] / 1000) / 60); tft.print("m"); tft.print((Joy_time[1] / 1000) % 60); tft.print("s"); } _b = boolean((Joy_time[1] / 1000) % 2); //battery------------------ tft.fillRect(tft_width - tft_bat_x - 3, 3, map(_V_bat, _V_min, _V_max, 0, tft_bat_x - 2) , tft_bat_y - 2, tft_colorB); tft.fillRect(tft_width - tft_bat_x - 3 + map(_V_bat, _V_min, _V_max, 0, tft_bat_x - 2), 3, map(_V_bat, _V_min, _V_max, tft_bat_x - 2, 0) , tft_bat_y - 2, tft_colorA); for (uint8_t a = 0; a < 8; a++) { int8_t _C_x_A0, _C_x_B0, _C_x_A, _C_x_B, _C_x_A1, _C_x_B1; int8_t _C_x; if (outBuf[a] < Joy_MID) { _C_x = map(outBuf[a], Joy_MID - Joy_maximum, Joy_MID, _C_x_S, _C_x_M); _C_x_A0 = _C_x_S; _C_x_B0 = _C_x - _C_x_S; _C_x_A = _C_x; _C_x_B = _C_x_M - _C_x; _C_x_A1 = _C_x_M; _C_x_B1 = _C_x_E - _C_x_M; } else if (outBuf[a] > Joy_MID) { _C_x = map(outBuf[a], Joy_MID, Joy_MID + Joy_maximum, _C_x_M, _C_x_E); _C_x_A0 = _C_x_S; _C_x_B0 = _C_x_M - _C_x_S; _C_x_A = _C_x_M; _C_x_B = _C_x - _C_x_M; _C_x_A1 = _C_x; _C_x_B1 = _C_x_E - _C_x; } else { _C_x_A0 = _C_x_S; _C_x_B0 = _C_x_M - _C_x_S; _C_x_A = _C_x_M; _C_x_B = 0; _C_x_A1 = _C_x_M; _C_x_B1 = _C_x_E - _C_x_M; } tft.fillRect(_C_x_A0, _Q_y + a * 15 + 1, _C_x_B0, _W_y - 2, tft_colorB); tft.fillRect(_C_x_A, _Q_y + a * 15 + 1, _C_x_B, _W_y - 2, tft_colorC); tft.fillRect(_C_x_A1, _Q_y + a * 15 + 1, _C_x_B1, _W_y - 2, tft_colorB); tft.fillRect(_C_x_M, _Q_y + a * 15 - 1, 1, _W_y + 2, tft_colorD); } //netsta------------------ tft.fillRect(0, 158, 128, 2, node_clock_error ? tft_colorD : tft_colorC); } </source> time.h <source lang="cpp"> #include "Arduino.h" //unsigned long time; unsigned long TIME1; //setup delay unsigned long time2; //send data unsigned long time3; //battery unsigned long Joy_time[2] = {0, 0}; //joy </source> ==视频==
返回至
平衡车/zh
。
导航菜单
个人工具
创建账户
登录
名字空间
页面
讨论
变种
视图
阅读
查看源代码
查看历史
更多
搜索
Welcome
首页
创客大赛
大赛详情
3D打印
安装月球车
图形化编程
操控月球车
升级月球车
编程工具下载
软件下载
Arduino
Processing
Mixly
Scratch
模块套件
Microduino 102
mCookie 102
mCookie 202
mCookie 302
IBC
其他
应用套件
四轴飞行器
平衡车
小车CUBE
音乐播放器
刷卡音乐播放器
wifi气象站
彩虹音乐触摸灯
分贝检测仪
迎门汇报
LED点阵时钟
LED点阵屏幕
硬件
mCookie
Sensor
Microduino
MicroWrt
MicroNux
MicroRobot-Core
MicroRobot-CoreESP
ideaBoard
ideaBox
MicroMV
MicroAI
帮助
常见问题
帮助
工具
链入页面
相关更改
特殊页面
页面信息